Merge branch 'main' into apply-dim-to-embedding-call
This commit is contained in:
commit
d8a6355e41
8 changed files with 185 additions and 539 deletions
|
|
@ -194,9 +194,10 @@ LLM_BINDING_API_KEY=your_api_key
|
|||
### Gemini example
|
||||
# LLM_BINDING=gemini
|
||||
# LLM_MODEL=gemini-flash-latest
|
||||
# LLM_BINDING_HOST=https://generativelanguage.googleapis.com
|
||||
# LLM_BINDING_API_KEY=your_gemini_api_key
|
||||
# GEMINI_LLM_MAX_OUTPUT_TOKENS=8192
|
||||
# LLM_BINDING_HOST=https://generativelanguage.googleapis.com
|
||||
GEMINI_LLM_THINKING_CONFIG='{"thinking_budget": 0, "include_thoughts": false}'
|
||||
# GEMINI_LLM_MAX_OUTPUT_TOKENS=9000
|
||||
# GEMINI_LLM_TEMPERATURE=0.7
|
||||
|
||||
### OpenAI Compatible API Specific Parameters
|
||||
|
|
|
|||
|
|
@ -1,105 +0,0 @@
|
|||
# pip install -q -U google-genai to use gemini as a client
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
from dotenv import load_dotenv
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
load_dotenv()
|
||||
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if os.path.exists(WORKING_DIR):
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(WORKING_DIR)
|
||||
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
# 1. Initialize the GenAI Client with your Gemini API Key
|
||||
client = genai.Client(api_key=gemini_api_key)
|
||||
|
||||
# 2. Combine prompts: system prompt, history, and user prompt
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
|
||||
combined_prompt = ""
|
||||
if system_prompt:
|
||||
combined_prompt += f"{system_prompt}\n"
|
||||
|
||||
for msg in history_messages:
|
||||
# Each msg is expected to be a dict: {"role": "...", "content": "..."}
|
||||
combined_prompt += f"{msg['role']}: {msg['content']}\n"
|
||||
|
||||
# Finally, add the new user prompt
|
||||
combined_prompt += f"user: {prompt}"
|
||||
|
||||
# 3. Call the Gemini model
|
||||
response = client.models.generate_content(
|
||||
model="gemini-1.5-flash",
|
||||
contents=[combined_prompt],
|
||||
config=types.GenerateContentConfig(max_output_tokens=500, temperature=0.1),
|
||||
)
|
||||
|
||||
# 4. Return the response text
|
||||
return response.text
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
return embeddings
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
file_path = "story.txt"
|
||||
with open(file_path, "r") as file:
|
||||
text = file.read()
|
||||
|
||||
rag.insert(text)
|
||||
|
||||
response = rag.query(
|
||||
query="What is the main theme of the story?",
|
||||
param=QueryParam(mode="hybrid", top_k=5, response_type="single line"),
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -1,230 +0,0 @@
|
|||
# pip install -q -U google-genai to use gemini as a client
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
import dataclasses
|
||||
from pathlib import Path
|
||||
import hashlib
|
||||
import numpy as np
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
from dotenv import load_dotenv
|
||||
from lightrag.utils import EmbeddingFunc, Tokenizer
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
import sentencepiece as spm
|
||||
import requests
|
||||
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
load_dotenv()
|
||||
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if os.path.exists(WORKING_DIR):
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(WORKING_DIR)
|
||||
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
class GemmaTokenizer(Tokenizer):
|
||||
# adapted from google-cloud-aiplatform[tokenization]
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class _TokenizerConfig:
|
||||
tokenizer_model_url: str
|
||||
tokenizer_model_hash: str
|
||||
|
||||
_TOKENIZERS = {
|
||||
"google/gemma2": _TokenizerConfig(
|
||||
tokenizer_model_url="https://raw.githubusercontent.com/google/gemma_pytorch/33b652c465537c6158f9a472ea5700e5e770ad3f/tokenizer/tokenizer.model",
|
||||
tokenizer_model_hash="61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2",
|
||||
),
|
||||
"google/gemma3": _TokenizerConfig(
|
||||
tokenizer_model_url="https://raw.githubusercontent.com/google/gemma_pytorch/cb7c0152a369e43908e769eb09e1ce6043afe084/tokenizer/gemma3_cleaned_262144_v2.spiece.model",
|
||||
tokenizer_model_hash="1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c",
|
||||
),
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self, model_name: str = "gemini-2.0-flash", tokenizer_dir: Optional[str] = None
|
||||
):
|
||||
# https://github.com/google/gemma_pytorch/tree/main/tokenizer
|
||||
if "1.5" in model_name or "1.0" in model_name:
|
||||
# up to gemini 1.5 gemma2 is a comparable local tokenizer
|
||||
# https://github.com/googleapis/python-aiplatform/blob/main/vertexai/tokenization/_tokenizer_loading.py
|
||||
tokenizer_name = "google/gemma2"
|
||||
else:
|
||||
# for gemini > 2.0 gemma3 was used
|
||||
tokenizer_name = "google/gemma3"
|
||||
|
||||
file_url = self._TOKENIZERS[tokenizer_name].tokenizer_model_url
|
||||
tokenizer_model_name = file_url.rsplit("/", 1)[1]
|
||||
expected_hash = self._TOKENIZERS[tokenizer_name].tokenizer_model_hash
|
||||
|
||||
tokenizer_dir = Path(tokenizer_dir)
|
||||
if tokenizer_dir.is_dir():
|
||||
file_path = tokenizer_dir / tokenizer_model_name
|
||||
model_data = self._maybe_load_from_cache(
|
||||
file_path=file_path, expected_hash=expected_hash
|
||||
)
|
||||
else:
|
||||
model_data = None
|
||||
if not model_data:
|
||||
model_data = self._load_from_url(
|
||||
file_url=file_url, expected_hash=expected_hash
|
||||
)
|
||||
self.save_tokenizer_to_cache(cache_path=file_path, model_data=model_data)
|
||||
|
||||
tokenizer = spm.SentencePieceProcessor()
|
||||
tokenizer.LoadFromSerializedProto(model_data)
|
||||
super().__init__(model_name=model_name, tokenizer=tokenizer)
|
||||
|
||||
def _is_valid_model(self, model_data: bytes, expected_hash: str) -> bool:
|
||||
"""Returns true if the content is valid by checking the hash."""
|
||||
return hashlib.sha256(model_data).hexdigest() == expected_hash
|
||||
|
||||
def _maybe_load_from_cache(self, file_path: Path, expected_hash: str) -> bytes:
|
||||
"""Loads the model data from the cache path."""
|
||||
if not file_path.is_file():
|
||||
return
|
||||
with open(file_path, "rb") as f:
|
||||
content = f.read()
|
||||
if self._is_valid_model(model_data=content, expected_hash=expected_hash):
|
||||
return content
|
||||
|
||||
# Cached file corrupted.
|
||||
self._maybe_remove_file(file_path)
|
||||
|
||||
def _load_from_url(self, file_url: str, expected_hash: str) -> bytes:
|
||||
"""Loads model bytes from the given file url."""
|
||||
resp = requests.get(file_url)
|
||||
resp.raise_for_status()
|
||||
content = resp.content
|
||||
|
||||
if not self._is_valid_model(model_data=content, expected_hash=expected_hash):
|
||||
actual_hash = hashlib.sha256(content).hexdigest()
|
||||
raise ValueError(
|
||||
f"Downloaded model file is corrupted."
|
||||
f" Expected hash {expected_hash}. Got file hash {actual_hash}."
|
||||
)
|
||||
return content
|
||||
|
||||
@staticmethod
|
||||
def save_tokenizer_to_cache(cache_path: Path, model_data: bytes) -> None:
|
||||
"""Saves the model data to the cache path."""
|
||||
try:
|
||||
if not cache_path.is_file():
|
||||
cache_dir = cache_path.parent
|
||||
cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
with open(cache_path, "wb") as f:
|
||||
f.write(model_data)
|
||||
except OSError:
|
||||
# Don't raise if we cannot write file.
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _maybe_remove_file(file_path: Path) -> None:
|
||||
"""Removes the file if exists."""
|
||||
if not file_path.is_file():
|
||||
return
|
||||
try:
|
||||
file_path.unlink()
|
||||
except OSError:
|
||||
# Don't raise if we cannot remove file.
|
||||
pass
|
||||
|
||||
# def encode(self, content: str) -> list[int]:
|
||||
# return self.tokenizer.encode(content)
|
||||
|
||||
# def decode(self, tokens: list[int]) -> str:
|
||||
# return self.tokenizer.decode(tokens)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
# 1. Initialize the GenAI Client with your Gemini API Key
|
||||
client = genai.Client(api_key=gemini_api_key)
|
||||
|
||||
# 2. Combine prompts: system prompt, history, and user prompt
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
|
||||
combined_prompt = ""
|
||||
if system_prompt:
|
||||
combined_prompt += f"{system_prompt}\n"
|
||||
|
||||
for msg in history_messages:
|
||||
# Each msg is expected to be a dict: {"role": "...", "content": "..."}
|
||||
combined_prompt += f"{msg['role']}: {msg['content']}\n"
|
||||
|
||||
# Finally, add the new user prompt
|
||||
combined_prompt += f"user: {prompt}"
|
||||
|
||||
# 3. Call the Gemini model
|
||||
response = client.models.generate_content(
|
||||
model="gemini-1.5-flash",
|
||||
contents=[combined_prompt],
|
||||
config=types.GenerateContentConfig(max_output_tokens=500, temperature=0.1),
|
||||
)
|
||||
|
||||
# 4. Return the response text
|
||||
return response.text
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||
return embeddings
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
# tiktoken_model_name="gpt-4o-mini",
|
||||
tokenizer=GemmaTokenizer(
|
||||
tokenizer_dir=(Path(WORKING_DIR) / "vertexai_tokenizer_model"),
|
||||
model_name="gemini-2.0-flash",
|
||||
),
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
file_path = "story.txt"
|
||||
with open(file_path, "r") as file:
|
||||
text = file.read()
|
||||
|
||||
rag.insert(text)
|
||||
|
||||
response = rag.query(
|
||||
query="What is the main theme of the story?",
|
||||
param=QueryParam(mode="hybrid", top_k=5, response_type="single line"),
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -1,151 +0,0 @@
|
|||
# pip install -q -U google-genai to use gemini as a client
|
||||
|
||||
import os
|
||||
import asyncio
|
||||
import numpy as np
|
||||
import nest_asyncio
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
from dotenv import load_dotenv
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
from lightrag.llm.siliconcloud import siliconcloud_embedding
|
||||
from lightrag.utils import setup_logger
|
||||
from lightrag.utils import TokenTracker
|
||||
|
||||
setup_logger("lightrag", level="DEBUG")
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
load_dotenv()
|
||||
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
||||
siliconflow_api_key = os.getenv("SILICONFLOW_API_KEY")
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
token_tracker = TokenTracker()
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
# 1. Initialize the GenAI Client with your Gemini API Key
|
||||
client = genai.Client(api_key=gemini_api_key)
|
||||
|
||||
# 2. Combine prompts: system prompt, history, and user prompt
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
|
||||
combined_prompt = ""
|
||||
if system_prompt:
|
||||
combined_prompt += f"{system_prompt}\n"
|
||||
|
||||
for msg in history_messages:
|
||||
# Each msg is expected to be a dict: {"role": "...", "content": "..."}
|
||||
combined_prompt += f"{msg['role']}: {msg['content']}\n"
|
||||
|
||||
# Finally, add the new user prompt
|
||||
combined_prompt += f"user: {prompt}"
|
||||
|
||||
# 3. Call the Gemini model
|
||||
response = client.models.generate_content(
|
||||
model="gemini-2.0-flash",
|
||||
contents=[combined_prompt],
|
||||
config=types.GenerateContentConfig(
|
||||
max_output_tokens=5000, temperature=0, top_k=10
|
||||
),
|
||||
)
|
||||
|
||||
# 4. Get token counts with null safety
|
||||
usage = getattr(response, "usage_metadata", None)
|
||||
prompt_tokens = getattr(usage, "prompt_token_count", 0) or 0
|
||||
completion_tokens = getattr(usage, "candidates_token_count", 0) or 0
|
||||
total_tokens = getattr(usage, "total_token_count", 0) or (
|
||||
prompt_tokens + completion_tokens
|
||||
)
|
||||
|
||||
token_counts = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
}
|
||||
|
||||
token_tracker.add_usage(token_counts)
|
||||
|
||||
# 5. Return the response text
|
||||
return response.text
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await siliconcloud_embedding(
|
||||
texts,
|
||||
model="BAAI/bge-m3",
|
||||
api_key=siliconflow_api_key,
|
||||
max_token_size=512,
|
||||
)
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
entity_extract_max_gleaning=1,
|
||||
enable_llm_cache=True,
|
||||
enable_llm_cache_for_entity_extract=True,
|
||||
embedding_cache_config={"enabled": True, "similarity_threshold": 0.90},
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Context Manager Method
|
||||
with token_tracker:
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="global"),
|
||||
)
|
||||
)
|
||||
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid"),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -511,7 +511,9 @@ def create_app(args):
|
|||
|
||||
return optimized_azure_openai_model_complete
|
||||
|
||||
def create_optimized_gemini_llm_func(config_cache: LLMConfigCache, args):
|
||||
def create_optimized_gemini_llm_func(
|
||||
config_cache: LLMConfigCache, args, llm_timeout: int
|
||||
):
|
||||
"""Create optimized Gemini LLM function with cached configuration"""
|
||||
|
||||
async def optimized_gemini_model_complete(
|
||||
|
|
@ -526,6 +528,8 @@ def create_app(args):
|
|||
if history_messages is None:
|
||||
history_messages = []
|
||||
|
||||
# Use pre-processed configuration to avoid repeated parsing
|
||||
kwargs["timeout"] = llm_timeout
|
||||
if (
|
||||
config_cache.gemini_llm_options is not None
|
||||
and "generation_config" not in kwargs
|
||||
|
|
@ -567,7 +571,7 @@ def create_app(args):
|
|||
config_cache, args, llm_timeout
|
||||
)
|
||||
elif binding == "gemini":
|
||||
return create_optimized_gemini_llm_func(config_cache, args)
|
||||
return create_optimized_gemini_llm_func(config_cache, args, llm_timeout)
|
||||
else: # openai and compatible
|
||||
# Use optimized function with pre-processed configuration
|
||||
return create_optimized_openai_llm_func(config_cache, args, llm_timeout)
|
||||
|
|
|
|||
|
|
@ -486,9 +486,9 @@ class GeminiLLMOptions(BindingOptions):
|
|||
presence_penalty: float = 0.0
|
||||
frequency_penalty: float = 0.0
|
||||
stop_sequences: List[str] = field(default_factory=list)
|
||||
response_mime_type: str | None = None
|
||||
seed: int | None = None
|
||||
thinking_config: dict | None = None
|
||||
safety_settings: dict | None = None
|
||||
system_instruction: str | None = None
|
||||
|
||||
_help: ClassVar[dict[str, str]] = {
|
||||
"temperature": "Controls randomness (0.0-2.0, higher = more creative)",
|
||||
|
|
@ -499,9 +499,9 @@ class GeminiLLMOptions(BindingOptions):
|
|||
"presence_penalty": "Penalty for token presence (-2.0 to 2.0)",
|
||||
"frequency_penalty": "Penalty for token frequency (-2.0 to 2.0)",
|
||||
"stop_sequences": "Stop sequences (JSON array of strings, e.g., '[\"END\"]')",
|
||||
"response_mime_type": "Desired MIME type for the response (e.g., application/json)",
|
||||
"seed": "Random seed for reproducible generation (leave empty for random)",
|
||||
"thinking_config": "Thinking configuration (JSON dict, e.g., '{\"thinking_budget\": 1024}' or '{\"include_thoughts\": true}')",
|
||||
"safety_settings": "JSON object with Gemini safety settings overrides",
|
||||
"system_instruction": "Default system instruction applied to every request",
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -33,24 +33,33 @@ LOG = logging.getLogger(__name__)
|
|||
|
||||
|
||||
@lru_cache(maxsize=8)
|
||||
def _get_gemini_client(api_key: str, base_url: str | None) -> genai.Client:
|
||||
def _get_gemini_client(
|
||||
api_key: str, base_url: str | None, timeout: int | None = None
|
||||
) -> genai.Client:
|
||||
"""
|
||||
Create (or fetch cached) Gemini client.
|
||||
|
||||
Args:
|
||||
api_key: Google Gemini API key.
|
||||
base_url: Optional custom API endpoint.
|
||||
timeout: Optional request timeout in milliseconds.
|
||||
|
||||
Returns:
|
||||
genai.Client: Configured Gemini client instance.
|
||||
"""
|
||||
client_kwargs: dict[str, Any] = {"api_key": api_key}
|
||||
|
||||
if base_url and base_url != DEFAULT_GEMINI_ENDPOINT:
|
||||
if base_url and base_url != DEFAULT_GEMINI_ENDPOINT or timeout is not None:
|
||||
try:
|
||||
client_kwargs["http_options"] = types.HttpOptions(api_endpoint=base_url)
|
||||
http_options_kwargs = {}
|
||||
if base_url and base_url != DEFAULT_GEMINI_ENDPOINT:
|
||||
http_options_kwargs["api_endpoint"] = base_url
|
||||
if timeout is not None:
|
||||
http_options_kwargs["timeout"] = timeout
|
||||
|
||||
client_kwargs["http_options"] = types.HttpOptions(**http_options_kwargs)
|
||||
except Exception as exc: # pragma: no cover - defensive
|
||||
LOG.warning("Failed to apply custom Gemini endpoint %s: %s", base_url, exc)
|
||||
LOG.warning("Failed to apply custom Gemini http_options: %s", exc)
|
||||
|
||||
try:
|
||||
return genai.Client(**client_kwargs)
|
||||
|
|
@ -114,24 +123,44 @@ def _format_history_messages(history_messages: list[dict[str, Any]] | None) -> s
|
|||
return "\n".join(history_lines)
|
||||
|
||||
|
||||
def _extract_response_text(response: Any) -> str:
|
||||
if getattr(response, "text", None):
|
||||
return response.text
|
||||
def _extract_response_text(
|
||||
response: Any, extract_thoughts: bool = False
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Extract text content from Gemini response, separating regular content from thoughts.
|
||||
|
||||
Args:
|
||||
response: Gemini API response object
|
||||
extract_thoughts: Whether to extract thought content separately
|
||||
|
||||
Returns:
|
||||
Tuple of (regular_text, thought_text)
|
||||
"""
|
||||
candidates = getattr(response, "candidates", None)
|
||||
if not candidates:
|
||||
return ""
|
||||
return ("", "")
|
||||
|
||||
regular_parts: list[str] = []
|
||||
thought_parts: list[str] = []
|
||||
|
||||
parts: list[str] = []
|
||||
for candidate in candidates:
|
||||
if not getattr(candidate, "content", None):
|
||||
continue
|
||||
for part in getattr(candidate.content, "parts", []):
|
||||
# Use 'or []' to handle None values from parts attribute
|
||||
for part in getattr(candidate.content, "parts", None) or []:
|
||||
text = getattr(part, "text", None)
|
||||
if text:
|
||||
parts.append(text)
|
||||
if not text:
|
||||
continue
|
||||
|
||||
return "\n".join(parts)
|
||||
# Check if this part is thought content using the 'thought' attribute
|
||||
is_thought = getattr(part, "thought", False)
|
||||
|
||||
if is_thought and extract_thoughts:
|
||||
thought_parts.append(text)
|
||||
elif not is_thought:
|
||||
regular_parts.append(text)
|
||||
|
||||
return ("\n".join(regular_parts), "\n".join(thought_parts))
|
||||
|
||||
|
||||
async def gemini_complete_if_cache(
|
||||
|
|
@ -139,22 +168,58 @@ async def gemini_complete_if_cache(
|
|||
prompt: str,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
*,
|
||||
api_key: str | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
generation_config: dict[str, Any] | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
hashing_kv: Any | None = None, # noqa: ARG001 - present for interface parity
|
||||
stream: bool | None = None,
|
||||
enable_cot: bool = False, # noqa: ARG001 - not supported by Gemini currently
|
||||
timeout: float | None = None, # noqa: ARG001 - handled by caller if needed
|
||||
keyword_extraction: bool = False,
|
||||
generation_config: dict[str, Any] | None = None,
|
||||
timeout: int | None = None,
|
||||
**_: Any,
|
||||
) -> str | AsyncIterator[str]:
|
||||
"""
|
||||
Complete a prompt using Gemini's API with Chain of Thought (COT) support.
|
||||
|
||||
This function supports automatic integration of reasoning content from Gemini models
|
||||
that provide Chain of Thought capabilities via the thinking_config API feature.
|
||||
|
||||
COT Integration:
|
||||
- When enable_cot=True: Thought content is wrapped in <think>...</think> tags
|
||||
- When enable_cot=False: Thought content is filtered out, only regular content returned
|
||||
- Thought content is identified by the 'thought' attribute on response parts
|
||||
- Requires thinking_config to be enabled in generation_config for API to return thoughts
|
||||
|
||||
Args:
|
||||
model: The Gemini model to use.
|
||||
prompt: The prompt to complete.
|
||||
system_prompt: Optional system prompt to include.
|
||||
history_messages: Optional list of previous messages in the conversation.
|
||||
api_key: Optional Gemini API key. If None, uses environment variable.
|
||||
base_url: Optional custom API endpoint.
|
||||
generation_config: Optional generation configuration dict.
|
||||
keyword_extraction: Whether to use JSON response format.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
stream: Whether to stream the response.
|
||||
hashing_kv: Storage interface (for interface parity with other bindings).
|
||||
enable_cot: Whether to include Chain of Thought content in the response.
|
||||
timeout: Request timeout in seconds (will be converted to milliseconds for Gemini API).
|
||||
**_: Additional keyword arguments (ignored).
|
||||
|
||||
Returns:
|
||||
The completed text (with COT content if enable_cot=True) or an async iterator
|
||||
of text chunks if streaming. COT content is wrapped in <think>...</think> tags.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the response from Gemini is empty.
|
||||
ValueError: If API key is not provided or configured.
|
||||
"""
|
||||
loop = asyncio.get_running_loop()
|
||||
|
||||
key = _ensure_api_key(api_key)
|
||||
client = _get_gemini_client(key, base_url)
|
||||
# Convert timeout from seconds to milliseconds for Gemini API
|
||||
timeout_ms = timeout * 1000 if timeout else None
|
||||
client = _get_gemini_client(key, base_url, timeout_ms)
|
||||
|
||||
history_block = _format_history_messages(history_messages)
|
||||
prompt_sections = []
|
||||
|
|
@ -184,6 +249,11 @@ async def gemini_complete_if_cache(
|
|||
usage_container: dict[str, Any] = {}
|
||||
|
||||
def _stream_model() -> None:
|
||||
# COT state tracking for streaming
|
||||
cot_active = False
|
||||
cot_started = False
|
||||
initial_content_seen = False
|
||||
|
||||
try:
|
||||
stream_kwargs = dict(request_kwargs)
|
||||
stream_iterator = client.models.generate_content_stream(**stream_kwargs)
|
||||
|
|
@ -191,20 +261,61 @@ async def gemini_complete_if_cache(
|
|||
usage = getattr(chunk, "usage_metadata", None)
|
||||
if usage is not None:
|
||||
usage_container["usage"] = usage
|
||||
text_piece = getattr(chunk, "text", None) or _extract_response_text(
|
||||
chunk
|
||||
|
||||
# Extract both regular and thought content
|
||||
regular_text, thought_text = _extract_response_text(
|
||||
chunk, extract_thoughts=True
|
||||
)
|
||||
if text_piece:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, text_piece)
|
||||
|
||||
if enable_cot:
|
||||
# Process regular content
|
||||
if regular_text:
|
||||
if not initial_content_seen:
|
||||
initial_content_seen = True
|
||||
|
||||
# Close COT section if it was active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
cot_active = False
|
||||
|
||||
# Send regular content
|
||||
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||
|
||||
# Process thought content
|
||||
if thought_text:
|
||||
if not initial_content_seen and not cot_started:
|
||||
# Start COT section
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "<think>")
|
||||
cot_active = True
|
||||
cot_started = True
|
||||
|
||||
# Send thought content if COT is active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(
|
||||
queue.put_nowait, thought_text
|
||||
)
|
||||
else:
|
||||
# COT disabled - only send regular content
|
||||
if regular_text:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||
|
||||
# Ensure COT is properly closed if still active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
|
||||
loop.call_soon_threadsafe(queue.put_nowait, None)
|
||||
except Exception as exc: # pragma: no cover - surface runtime issues
|
||||
# Try to close COT tag before reporting error
|
||||
if cot_active:
|
||||
try:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
except Exception:
|
||||
pass
|
||||
loop.call_soon_threadsafe(queue.put_nowait, exc)
|
||||
|
||||
loop.run_in_executor(None, _stream_model)
|
||||
|
||||
async def _async_stream() -> AsyncIterator[str]:
|
||||
accumulated = ""
|
||||
emitted = ""
|
||||
try:
|
||||
while True:
|
||||
item = await queue.get()
|
||||
|
|
@ -217,16 +328,9 @@ async def gemini_complete_if_cache(
|
|||
if "\\u" in chunk_text:
|
||||
chunk_text = safe_unicode_decode(chunk_text.encode("utf-8"))
|
||||
|
||||
accumulated += chunk_text
|
||||
sanitized = remove_think_tags(accumulated)
|
||||
if sanitized.startswith(emitted):
|
||||
delta = sanitized[len(emitted) :]
|
||||
else:
|
||||
delta = sanitized
|
||||
emitted = sanitized
|
||||
|
||||
if delta:
|
||||
yield delta
|
||||
# Yield the chunk directly without filtering
|
||||
# COT filtering is already handled in _stream_model()
|
||||
yield chunk_text
|
||||
finally:
|
||||
usage = usage_container.get("usage")
|
||||
if token_tracker and usage:
|
||||
|
|
@ -244,14 +348,33 @@ async def gemini_complete_if_cache(
|
|||
|
||||
response = await asyncio.to_thread(_call_model)
|
||||
|
||||
text = _extract_response_text(response)
|
||||
if not text:
|
||||
# Extract both regular text and thought text
|
||||
regular_text, thought_text = _extract_response_text(response, extract_thoughts=True)
|
||||
|
||||
# Apply COT filtering logic based on enable_cot parameter
|
||||
if enable_cot:
|
||||
# Include thought content wrapped in <think> tags
|
||||
if thought_text and thought_text.strip():
|
||||
if not regular_text or regular_text.strip() == "":
|
||||
# Only thought content available
|
||||
final_text = f"<think>{thought_text}</think>"
|
||||
else:
|
||||
# Both content types present: prepend thought to regular content
|
||||
final_text = f"<think>{thought_text}</think>{regular_text}"
|
||||
else:
|
||||
# No thought content, use regular content only
|
||||
final_text = regular_text or ""
|
||||
else:
|
||||
# Filter out thought content, return only regular content
|
||||
final_text = regular_text or ""
|
||||
|
||||
if not final_text:
|
||||
raise RuntimeError("Gemini response did not contain any text content.")
|
||||
|
||||
if "\\u" in text:
|
||||
text = safe_unicode_decode(text.encode("utf-8"))
|
||||
if "\\u" in final_text:
|
||||
final_text = safe_unicode_decode(final_text.encode("utf-8"))
|
||||
|
||||
text = remove_think_tags(text)
|
||||
final_text = remove_think_tags(final_text)
|
||||
|
||||
usage = getattr(response, "usage_metadata", None)
|
||||
if token_tracker and usage:
|
||||
|
|
@ -263,8 +386,8 @@ async def gemini_complete_if_cache(
|
|||
}
|
||||
)
|
||||
|
||||
logger.debug("Gemini response length: %s", len(text))
|
||||
return text
|
||||
logger.debug("Gemini response length: %s", len(final_text))
|
||||
return final_text
|
||||
|
||||
|
||||
async def gemini_model_complete(
|
||||
|
|
|
|||
|
|
@ -138,6 +138,9 @@ async def openai_complete_if_cache(
|
|||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
keyword_extraction: bool = False, # Will be removed from kwargs before passing to OpenAI
|
||||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||
|
|
@ -172,8 +175,9 @@ async def openai_complete_if_cache(
|
|||
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
|
||||
These will be passed to the client constructor but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
||||
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
||||
- stream: Whether to stream the response. Default is False.
|
||||
- timeout: Request timeout in seconds. Default is None.
|
||||
|
||||
Returns:
|
||||
The completed text (with integrated COT content if available) or an async iterator
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue