This commit is contained in:
Raphaël MANSUY 2025-12-04 19:14:28 +08:00
parent 2b487421f2
commit d266d00f3e
2 changed files with 52 additions and 42 deletions

View file

@ -410,6 +410,11 @@ LightRAG 需要利用LLM和Embeding模型来完成文档索引和知识库查询
* LightRAG还支持类OpenAI的聊天/嵌入API
```python
import os
import numpy as np
from lightrag.utils import wrap_embedding_func_with_attrs
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
@ -423,8 +428,9 @@ async def llm_model_func(
**kwargs
)
@wrap_embedding_func_with_attrs(embedding_dim=4096, max_token_size=8192)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
return await openai_embed.func(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
@ -435,10 +441,7 @@ async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096,
func=embedding_func
)
embedding_func=embedding_func # 直接传入装饰后的函数
)
await rag.initialize_storages()
@ -481,19 +484,20 @@ rag = LightRAG(
然后您只需要按如下方式设置LightRAG
```python
import numpy as np
from lightrag.utils import wrap_embedding_func_with_attrs
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
# 使用Ollama模型初始化LightRAG
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # 使用Ollama模型进行文本生成
llm_model_name='your_model_name', # 您的模型名称
# 使用Ollama嵌入函数
embedding_func=EmbeddingFunc(
embedding_dim=768,
func=lambda texts: ollama_embed(
texts,
embed_model="nomic-embed-text"
)
),
embedding_func=embedding_func, # 直接传入装饰后的函数
)
```
@ -532,19 +536,20 @@ ollama create -f Modelfile qwen2m
您可以使用`llm_model_kwargs`参数配置ollama
```python
import numpy as np
from lightrag.utils import wrap_embedding_func_with_attrs
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # 使用Ollama模型进行文本生成
llm_model_name='your_model_name', # 您的模型名称
llm_model_kwargs={"options": {"num_ctx": 32768}},
# 使用Ollama嵌入函数
embedding_func=EmbeddingFunc(
embedding_dim=768,
func=lambda texts: ollama_embed(
texts,
embed_model="nomic-embed-text"
)
),
embedding_func=embedding_func, # 直接传入装饰后的函数
)
```

View file

@ -406,6 +406,11 @@ LightRAG requires the utilization of LLM and Embedding models to accomplish docu
* LightRAG also supports Open AI-like chat/embeddings APIs:
```python
import os
import numpy as np
from lightrag.utils import wrap_embedding_func_with_attrs
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
@ -419,8 +424,9 @@ async def llm_model_func(
**kwargs
)
@wrap_embedding_func_with_attrs(embedding_dim=4096, max_token_size=8192)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
return await openai_embed.func(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
@ -431,10 +437,7 @@ async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096,
func=embedding_func
)
embedding_func=embedding_func # Pass the decorated function directly
)
await rag.initialize_storages()
@ -479,19 +482,20 @@ If you want to use Ollama models, you need to pull model you plan to use and emb
Then you only need to set LightRAG as follows:
```python
import numpy as np
from lightrag.utils import wrap_embedding_func_with_attrs
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
# Initialize LightRAG with Ollama model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
func=lambda texts: ollama_embed(
texts,
embed_model="nomic-embed-text"
)
),
embedding_func=embedding_func, # Pass the decorated function directly
)
```
@ -530,19 +534,20 @@ ollama create -f Modelfile qwen2m
Tiy can use `llm_model_kwargs` param to configure ollama:
```python
import numpy as np
from lightrag.utils import wrap_embedding_func_with_attrs
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
llm_model_kwargs={"options": {"num_ctx": 32768}},
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
func=lambda texts: ollama_embed(
texts,
embed_model="nomic-embed-text"
)
),
embedding_func=embedding_func, # Pass the decorated function directly
)
```