cherry-pick 1d07ff7f
This commit is contained in:
parent
2b487421f2
commit
d266d00f3e
2 changed files with 52 additions and 42 deletions
47
README-zh.md
47
README-zh.md
|
|
@ -410,6 +410,11 @@ LightRAG 需要利用LLM和Embeding模型来完成文档索引和知识库查询
|
|||
* LightRAG还支持类OpenAI的聊天/嵌入API:
|
||||
|
||||
```python
|
||||
import os
|
||||
import numpy as np
|
||||
from lightrag.utils import wrap_embedding_func_with_attrs
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
|
|
@ -423,8 +428,9 @@ async def llm_model_func(
|
|||
**kwargs
|
||||
)
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=4096, max_token_size=8192)
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
return await openai_embed.func(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
|
@ -435,10 +441,7 @@ async def initialize_rag():
|
|||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
func=embedding_func
|
||||
)
|
||||
embedding_func=embedding_func # 直接传入装饰后的函数
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
|
|
@ -481,19 +484,20 @@ rag = LightRAG(
|
|||
然后您只需要按如下方式设置LightRAG:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from lightrag.utils import wrap_embedding_func_with_attrs
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
|
||||
|
||||
# 使用Ollama模型初始化LightRAG
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete, # 使用Ollama模型进行文本生成
|
||||
llm_model_name='your_model_name', # 您的模型名称
|
||||
# 使用Ollama嵌入函数
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
),
|
||||
embedding_func=embedding_func, # 直接传入装饰后的函数
|
||||
)
|
||||
```
|
||||
|
||||
|
|
@ -532,19 +536,20 @@ ollama create -f Modelfile qwen2m
|
|||
您可以使用`llm_model_kwargs`参数配置ollama:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from lightrag.utils import wrap_embedding_func_with_attrs
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete, # 使用Ollama模型进行文本生成
|
||||
llm_model_name='your_model_name', # 您的模型名称
|
||||
llm_model_kwargs={"options": {"num_ctx": 32768}},
|
||||
# 使用Ollama嵌入函数
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
),
|
||||
embedding_func=embedding_func, # 直接传入装饰后的函数
|
||||
)
|
||||
```
|
||||
|
||||
|
|
|
|||
47
README.md
47
README.md
|
|
@ -406,6 +406,11 @@ LightRAG requires the utilization of LLM and Embedding models to accomplish docu
|
|||
* LightRAG also supports Open AI-like chat/embeddings APIs:
|
||||
|
||||
```python
|
||||
import os
|
||||
import numpy as np
|
||||
from lightrag.utils import wrap_embedding_func_with_attrs
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
|
|
@ -419,8 +424,9 @@ async def llm_model_func(
|
|||
**kwargs
|
||||
)
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=4096, max_token_size=8192)
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embed(
|
||||
return await openai_embed.func(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
|
|
@ -431,10 +437,7 @@ async def initialize_rag():
|
|||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
func=embedding_func
|
||||
)
|
||||
embedding_func=embedding_func # Pass the decorated function directly
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
|
|
@ -479,19 +482,20 @@ If you want to use Ollama models, you need to pull model you plan to use and emb
|
|||
Then you only need to set LightRAG as follows:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from lightrag.utils import wrap_embedding_func_with_attrs
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
|
||||
|
||||
# Initialize LightRAG with Ollama model
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
|
||||
llm_model_name='your_model_name', # Your model name
|
||||
# Use Ollama embedding function
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
),
|
||||
embedding_func=embedding_func, # Pass the decorated function directly
|
||||
)
|
||||
```
|
||||
|
||||
|
|
@ -530,19 +534,20 @@ ollama create -f Modelfile qwen2m
|
|||
Tiy can use `llm_model_kwargs` param to configure ollama:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from lightrag.utils import wrap_embedding_func_with_attrs
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=768, max_token_size=8192)
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await ollama_embed.func(texts, embed_model="nomic-embed-text")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
|
||||
llm_model_name='your_model_name', # Your model name
|
||||
llm_model_kwargs={"options": {"num_ctx": 32768}},
|
||||
# Use Ollama embedding function
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
func=lambda texts: ollama_embed(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
),
|
||||
embedding_func=embedding_func, # Pass the decorated function directly
|
||||
)
|
||||
```
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue