cherry-pick ec40b17e
This commit is contained in:
parent
f7f9a9e6cf
commit
c7173baf3d
1 changed files with 25 additions and 83 deletions
|
|
@ -11,6 +11,7 @@ if not pm.is_installed("openai"):
|
|||
pm.install("openai")
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
|
|
@ -26,7 +27,6 @@ from lightrag.utils import (
|
|||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from lightrag.api import __api_version__
|
||||
|
||||
|
|
@ -36,32 +36,6 @@ from typing import Any, Union
|
|||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Try to import Langfuse for LLM observability (optional)
|
||||
# Falls back to standard OpenAI client if not available
|
||||
# Langfuse requires proper configuration to work correctly
|
||||
LANGFUSE_ENABLED = False
|
||||
try:
|
||||
# Check if required Langfuse environment variables are set
|
||||
langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY")
|
||||
langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY")
|
||||
|
||||
# Only enable Langfuse if both keys are configured
|
||||
if langfuse_public_key and langfuse_secret_key:
|
||||
from langfuse.openai import AsyncOpenAI
|
||||
|
||||
LANGFUSE_ENABLED = True
|
||||
logger.info("Langfuse observability enabled for OpenAI client")
|
||||
else:
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
logger.debug(
|
||||
"Langfuse environment variables not configured, using standard OpenAI client"
|
||||
)
|
||||
except ImportError:
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
logger.debug("Langfuse not available, using standard OpenAI client")
|
||||
|
||||
# use the .env that is inside the current folder
|
||||
# allows to use different .env file for each lightrag instance
|
||||
# the OS environment variables take precedence over the .env file
|
||||
|
|
@ -138,9 +112,6 @@ async def openai_complete_if_cache(
|
|||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||
|
|
@ -170,15 +141,13 @@ async def openai_complete_if_cache(
|
|||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False.
|
||||
stream: Whether to stream the response. Default is False.
|
||||
timeout: Request timeout in seconds. Default is None.
|
||||
keyword_extraction: Whether to enable keyword extraction mode. When True, triggers
|
||||
special response formatting for keyword extraction. Default is False.
|
||||
**kwargs: Additional keyword arguments to pass to the OpenAI API.
|
||||
Special kwargs:
|
||||
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
|
||||
These will be passed to the client constructor but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
||||
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
||||
|
||||
Returns:
|
||||
The completed text (with integrated COT content if available) or an async iterator
|
||||
|
|
@ -199,6 +168,7 @@ async def openai_complete_if_cache(
|
|||
|
||||
# Remove special kwargs that shouldn't be passed to OpenAI
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
|
||||
# Extract client configuration options
|
||||
client_configs = kwargs.pop("openai_client_configs", {})
|
||||
|
|
@ -228,12 +198,6 @@ async def openai_complete_if_cache(
|
|||
|
||||
messages = kwargs.pop("messages", messages)
|
||||
|
||||
# Add explicit parameters back to kwargs so they're passed to OpenAI API
|
||||
if stream is not None:
|
||||
kwargs["stream"] = stream
|
||||
if timeout is not None:
|
||||
kwargs["timeout"] = timeout
|
||||
|
||||
try:
|
||||
# Don't use async with context manager, use client directly
|
||||
if "response_format" in kwargs:
|
||||
|
|
@ -406,23 +370,18 @@ async def openai_complete_if_cache(
|
|||
)
|
||||
|
||||
# Ensure resources are released even if no exception occurs
|
||||
# Note: Some wrapped clients (e.g., Langfuse) may not implement aclose() properly
|
||||
if iteration_started and hasattr(response, "aclose"):
|
||||
aclose_method = getattr(response, "aclose", None)
|
||||
if callable(aclose_method):
|
||||
try:
|
||||
await response.aclose()
|
||||
logger.debug("Successfully closed stream response")
|
||||
except (AttributeError, TypeError) as close_error:
|
||||
# Some wrapper objects may report hasattr(aclose) but fail when called
|
||||
# This is expected behavior for certain client wrappers
|
||||
logger.debug(
|
||||
f"Stream response cleanup not supported by client wrapper: {close_error}"
|
||||
)
|
||||
except Exception as close_error:
|
||||
logger.warning(
|
||||
f"Unexpected error during stream response cleanup: {close_error}"
|
||||
)
|
||||
if (
|
||||
iteration_started
|
||||
and hasattr(response, "aclose")
|
||||
and callable(getattr(response, "aclose", None))
|
||||
):
|
||||
try:
|
||||
await response.aclose()
|
||||
logger.debug("Successfully closed stream response")
|
||||
except Exception as close_error:
|
||||
logger.warning(
|
||||
f"Failed to close stream response in finally block: {close_error}"
|
||||
)
|
||||
|
||||
# This prevents resource leaks since the caller doesn't handle closing
|
||||
try:
|
||||
|
|
@ -522,6 +481,7 @@ async def openai_complete(
|
|||
) -> Union[str, AsyncIterator[str]]:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
|
|
@ -530,7 +490,6 @@ async def openai_complete(
|
|||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -545,6 +504,7 @@ async def gpt_4o_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
|
|
@ -553,7 +513,6 @@ async def gpt_4o_complete(
|
|||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -568,6 +527,7 @@ async def gpt_4o_mini_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
|
|
@ -576,7 +536,6 @@ async def gpt_4o_mini_complete(
|
|||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -591,13 +550,13 @@ async def nvidia_openai_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
result = await openai_complete_if_cache(
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
base_url="https://integrate.api.nvidia.com/v1",
|
||||
**kwargs,
|
||||
)
|
||||
|
|
@ -619,7 +578,6 @@ async def openai_embed(
|
|||
model: str = "text-embedding-3-small",
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
embedding_dim: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
) -> np.ndarray:
|
||||
|
|
@ -630,12 +588,6 @@ async def openai_embed(
|
|||
model: The OpenAI embedding model to use.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
|
||||
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
|
||||
Do NOT manually pass this parameter when calling the function directly.
|
||||
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
|
||||
Manually passing a different value will trigger a warning and be ignored.
|
||||
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
|
@ -655,27 +607,17 @@ async def openai_embed(
|
|||
)
|
||||
|
||||
async with openai_async_client:
|
||||
# Prepare API call parameters
|
||||
api_params = {
|
||||
"model": model,
|
||||
"input": texts,
|
||||
"encoding_format": "base64",
|
||||
}
|
||||
|
||||
# Add dimensions parameter only if embedding_dim is provided
|
||||
if embedding_dim is not None:
|
||||
api_params["dimensions"] = embedding_dim
|
||||
|
||||
# Make API call
|
||||
response = await openai_async_client.embeddings.create(**api_params)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="base64"
|
||||
)
|
||||
|
||||
if token_tracker and hasattr(response, "usage"):
|
||||
token_counts = {
|
||||
"prompt_tokens": getattr(response.usage, "prompt_tokens", 0),
|
||||
"total_tokens": getattr(response.usage, "total_tokens", 0),
|
||||
}
|
||||
token_tracker.add_usage(token_counts)
|
||||
|
||||
|
||||
return np.array(
|
||||
[
|
||||
np.array(dp.embedding, dtype=np.float32)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue