Implement two-stage pipeline for RAG evaluation with separate semaphores
• Split RAG gen and eval stages
• Add rag_semaphore for stage 1
• Add eval_semaphore for stage 2
• Improve concurrency control
• Update connection pool limits
(cherry picked from commit 83715a3ac1)
This commit is contained in:
parent
dd425e5513
commit
c459caed26
1 changed files with 518 additions and 181 deletions
|
|
@ -1,6 +1,6 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
RAGAS Evaluation Script for Portfolio RAG System
|
||||
RAGAS Evaluation Script for LightRAG System
|
||||
|
||||
Evaluates RAG response quality using RAGAS metrics:
|
||||
- Faithfulness: Is the answer factually accurate based on context?
|
||||
|
|
@ -9,56 +9,98 @@ Evaluates RAG response quality using RAGAS metrics:
|
|||
- Context Precision: Is retrieved context clean without noise?
|
||||
|
||||
Usage:
|
||||
# Use defaults (sample_dataset.json, http://localhost:9621)
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
python lightrag/evaluation/eval_rag_quality.py http://localhost:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py http://your-rag-server.com:9621
|
||||
|
||||
# Specify custom dataset
|
||||
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
||||
python lightrag/evaluation/eval_rag_quality.py -d my_test.json
|
||||
|
||||
# Specify custom RAG endpoint
|
||||
python lightrag/evaluation/eval_rag_quality.py --ragendpoint http://my-server.com:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py -r http://my-server.com:9621
|
||||
|
||||
# Specify both
|
||||
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
||||
|
||||
# Get help
|
||||
python lightrag/evaluation/eval_rag_quality.py --help
|
||||
|
||||
Results are saved to: lightrag/evaluation/results/
|
||||
- results_YYYYMMDD_HHMMSS.csv (CSV export for analysis)
|
||||
- results_YYYYMMDD_HHMMSS.json (Full results with details)
|
||||
|
||||
Technical Notes:
|
||||
- Uses stable RAGAS API (LangchainLLMWrapper) for maximum compatibility
|
||||
- Supports custom OpenAI-compatible endpoints via EVAL_LLM_BINDING_HOST
|
||||
- Enables bypass_n mode for endpoints that don't support 'n' parameter
|
||||
- Deprecation warnings are suppressed for cleaner output
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import csv
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import httpx
|
||||
from dotenv import load_dotenv
|
||||
from lightrag.utils import logger
|
||||
|
||||
# Suppress LangchainLLMWrapper deprecation warning
|
||||
# We use LangchainLLMWrapper for stability and compatibility with all RAGAS versions
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
message=".*LangchainLLMWrapper is deprecated.*",
|
||||
category=DeprecationWarning,
|
||||
)
|
||||
|
||||
# Add parent directory to path
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
||||
|
||||
# Load .env from project root
|
||||
project_root = Path(__file__).parent.parent.parent
|
||||
load_dotenv(project_root / ".env")
|
||||
|
||||
# Setup OpenAI API key (required for RAGAS evaluation)
|
||||
# Use LLM_BINDING_API_KEY if OPENAI_API_KEY is not set
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
if "LLM_BINDING_API_KEY" in os.environ:
|
||||
os.environ["OPENAI_API_KEY"] = os.environ["LLM_BINDING_API_KEY"]
|
||||
else:
|
||||
os.environ["OPENAI_API_KEY"] = input("Enter your OpenAI API key: ")
|
||||
# use the .env that is inside the current folder
|
||||
# allows to use different .env file for each lightrag instance
|
||||
# the OS environment variables take precedence over the .env file
|
||||
load_dotenv(dotenv_path=".env", override=False)
|
||||
|
||||
# Conditional imports - will raise ImportError if dependencies not installed
|
||||
try:
|
||||
from datasets import Dataset
|
||||
from ragas import evaluate
|
||||
from ragas.metrics import (
|
||||
answer_relevancy,
|
||||
context_precision,
|
||||
context_recall,
|
||||
faithfulness,
|
||||
AnswerRelevancy,
|
||||
ContextPrecision,
|
||||
ContextRecall,
|
||||
Faithfulness,
|
||||
)
|
||||
except ImportError as e:
|
||||
print(f"❌ RAGAS import error: {e}")
|
||||
print(" Install with: pip install ragas datasets")
|
||||
sys.exit(1)
|
||||
from ragas.llms import LangchainLLMWrapper
|
||||
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
||||
from tqdm import tqdm
|
||||
|
||||
RAGAS_AVAILABLE = True
|
||||
|
||||
except ImportError:
|
||||
RAGAS_AVAILABLE = False
|
||||
Dataset = None
|
||||
evaluate = None
|
||||
LangchainLLMWrapper = None
|
||||
|
||||
|
||||
CONNECT_TIMEOUT_SECONDS = 180.0
|
||||
READ_TIMEOUT_SECONDS = 300.0
|
||||
TOTAL_TIMEOUT_SECONDS = 180.0
|
||||
|
||||
|
||||
def _is_nan(value: Any) -> bool:
|
||||
"""Return True when value is a float NaN."""
|
||||
return isinstance(value, float) and math.isnan(value)
|
||||
|
||||
|
||||
class RAGEvaluator:
|
||||
|
|
@ -72,7 +114,75 @@ class RAGEvaluator:
|
|||
test_dataset_path: Path to test dataset JSON file
|
||||
rag_api_url: Base URL of LightRAG API (e.g., http://localhost:9621)
|
||||
If None, will try to read from environment or use default
|
||||
|
||||
Environment Variables:
|
||||
EVAL_LLM_MODEL: LLM model for evaluation (default: gpt-4o-mini)
|
||||
EVAL_EMBEDDING_MODEL: Embedding model for evaluation (default: text-embedding-3-small)
|
||||
EVAL_LLM_BINDING_API_KEY: API key for evaluation models (fallback to OPENAI_API_KEY)
|
||||
EVAL_LLM_BINDING_HOST: Custom endpoint URL for evaluation models (optional)
|
||||
|
||||
Raises:
|
||||
ImportError: If ragas or datasets packages are not installed
|
||||
EnvironmentError: If EVAL_LLM_BINDING_API_KEY and OPENAI_API_KEY are both not set
|
||||
"""
|
||||
# Validate RAGAS dependencies are installed
|
||||
if not RAGAS_AVAILABLE:
|
||||
raise ImportError(
|
||||
"RAGAS dependencies not installed. "
|
||||
"Install with: pip install ragas datasets"
|
||||
)
|
||||
|
||||
# Configure evaluation models (for RAGAS scoring)
|
||||
eval_api_key = os.getenv("EVAL_LLM_BINDING_API_KEY") or os.getenv(
|
||||
"OPENAI_API_KEY"
|
||||
)
|
||||
if not eval_api_key:
|
||||
raise EnvironmentError(
|
||||
"EVAL_LLM_BINDING_API_KEY or OPENAI_API_KEY is required for evaluation. "
|
||||
"Set EVAL_LLM_BINDING_API_KEY to use a custom API key, "
|
||||
"or ensure OPENAI_API_KEY is set."
|
||||
)
|
||||
|
||||
eval_model = os.getenv("EVAL_LLM_MODEL", "gpt-4o-mini")
|
||||
eval_embedding_model = os.getenv(
|
||||
"EVAL_EMBEDDING_MODEL", "text-embedding-3-large"
|
||||
)
|
||||
eval_base_url = os.getenv("EVAL_LLM_BINDING_HOST")
|
||||
|
||||
# Create LLM and Embeddings instances for RAGAS
|
||||
llm_kwargs = {
|
||||
"model": eval_model,
|
||||
"api_key": eval_api_key,
|
||||
"max_retries": int(os.getenv("EVAL_LLM_MAX_RETRIES", "5")),
|
||||
"request_timeout": int(os.getenv("EVAL_LLM_TIMEOUT", "180")),
|
||||
}
|
||||
embedding_kwargs = {"model": eval_embedding_model, "api_key": eval_api_key}
|
||||
|
||||
if eval_base_url:
|
||||
llm_kwargs["base_url"] = eval_base_url
|
||||
embedding_kwargs["base_url"] = eval_base_url
|
||||
|
||||
# Create base LangChain LLM
|
||||
base_llm = ChatOpenAI(**llm_kwargs)
|
||||
self.eval_embeddings = OpenAIEmbeddings(**embedding_kwargs)
|
||||
|
||||
# Wrap LLM with LangchainLLMWrapper and enable bypass_n mode for custom endpoints
|
||||
# This ensures compatibility with endpoints that don't support the 'n' parameter
|
||||
# by generating multiple outputs through repeated prompts instead of using 'n' parameter
|
||||
try:
|
||||
self.eval_llm = LangchainLLMWrapper(
|
||||
langchain_llm=base_llm,
|
||||
bypass_n=True, # Enable bypass_n to avoid passing 'n' to OpenAI API
|
||||
)
|
||||
logger.debug("Successfully configured bypass_n mode for LLM wrapper")
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Could not configure LangchainLLMWrapper with bypass_n: %s. "
|
||||
"Using base LLM directly, which may cause warnings with custom endpoints.",
|
||||
e,
|
||||
)
|
||||
self.eval_llm = base_llm
|
||||
|
||||
if test_dataset_path is None:
|
||||
test_dataset_path = Path(__file__).parent / "sample_dataset.json"
|
||||
|
||||
|
|
@ -87,6 +197,41 @@ class RAGEvaluator:
|
|||
# Load test dataset
|
||||
self.test_cases = self._load_test_dataset()
|
||||
|
||||
# Store configuration values for display
|
||||
self.eval_model = eval_model
|
||||
self.eval_embedding_model = eval_embedding_model
|
||||
self.eval_base_url = eval_base_url
|
||||
self.eval_max_retries = llm_kwargs["max_retries"]
|
||||
self.eval_timeout = llm_kwargs["request_timeout"]
|
||||
|
||||
# Display configuration
|
||||
self._display_configuration()
|
||||
|
||||
def _display_configuration(self):
|
||||
"""Display all evaluation configuration settings"""
|
||||
logger.info("Evaluation Models:")
|
||||
logger.info(" • LLM Model: %s", self.eval_model)
|
||||
logger.info(" • Embedding Model: %s", self.eval_embedding_model)
|
||||
if self.eval_base_url:
|
||||
logger.info(" • Custom Endpoint: %s", self.eval_base_url)
|
||||
logger.info(
|
||||
" • Bypass N-Parameter: Enabled (use LangchainLLMWrapperfor compatibility)"
|
||||
)
|
||||
else:
|
||||
logger.info(" • Endpoint: OpenAI Official API")
|
||||
|
||||
logger.info("Concurrency & Rate Limiting:")
|
||||
query_top_k = int(os.getenv("EVAL_QUERY_TOP_K", "10"))
|
||||
logger.info(" • Query Top-K: %s Entities/Relations", query_top_k)
|
||||
logger.info(" • LLM Max Retries: %s", self.eval_max_retries)
|
||||
logger.info(" • LLM Timeout: %s seconds", self.eval_timeout)
|
||||
|
||||
logger.info("Test Configuration:")
|
||||
logger.info(" • Total Test Cases: %s", len(self.test_cases))
|
||||
logger.info(" • Test Dataset: %s", self.test_dataset_path.name)
|
||||
logger.info(" • LightRAG API: %s", self.rag_api_url)
|
||||
logger.info(" • Results Directory: %s", self.results_dir.name)
|
||||
|
||||
def _load_test_dataset(self) -> List[Dict[str, str]]:
|
||||
"""Load test cases from JSON file"""
|
||||
if not self.test_dataset_path.exists():
|
||||
|
|
@ -123,13 +268,22 @@ class RAGEvaluator:
|
|||
"include_references": True,
|
||||
"include_chunk_content": True, # NEW: Request chunk content in references
|
||||
"response_type": "Multiple Paragraphs",
|
||||
"top_k": 10,
|
||||
"top_k": int(os.getenv("EVAL_QUERY_TOP_K", "10")),
|
||||
}
|
||||
|
||||
# Get API key from environment for authentication
|
||||
api_key = os.getenv("LIGHTRAG_API_KEY")
|
||||
|
||||
# Prepare headers with optional authentication
|
||||
headers = {}
|
||||
if api_key:
|
||||
headers["X-API-Key"] = api_key
|
||||
|
||||
# Single optimized API call - gets both answer AND chunk content
|
||||
response = await client.post(
|
||||
f"{self.rag_api_url}/query",
|
||||
json=payload,
|
||||
headers=headers if headers else None,
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
|
|
@ -138,17 +292,31 @@ class RAGEvaluator:
|
|||
references = result.get("references", [])
|
||||
|
||||
# DEBUG: Inspect the API response
|
||||
print(f" 🔍 References Count: {len(references)}")
|
||||
logger.debug("🔍 References Count: %s", len(references))
|
||||
if references:
|
||||
first_ref = references[0]
|
||||
print(f" 🔍 First Reference Keys: {list(first_ref.keys())}")
|
||||
logger.debug("🔍 First Reference Keys: %s", list(first_ref.keys()))
|
||||
if "content" in first_ref:
|
||||
print(f" 🔍 Content Preview: {first_ref['content'][:100]}...")
|
||||
content_preview = first_ref["content"]
|
||||
if isinstance(content_preview, list) and content_preview:
|
||||
logger.debug(
|
||||
"🔍 Content Preview (first chunk): %s...",
|
||||
content_preview[0][:100],
|
||||
)
|
||||
elif isinstance(content_preview, str):
|
||||
logger.debug("🔍 Content Preview: %s...", content_preview[:100])
|
||||
|
||||
# Extract chunk content from enriched references
|
||||
contexts = [
|
||||
ref.get("content", "") for ref in references if ref.get("content")
|
||||
]
|
||||
# Note: content is now a list of chunks per reference (one file may have multiple chunks)
|
||||
contexts = []
|
||||
for ref in references:
|
||||
content = ref.get("content", [])
|
||||
if isinstance(content, list):
|
||||
# Flatten the list: each chunk becomes a separate context
|
||||
contexts.extend(content)
|
||||
elif isinstance(content, str):
|
||||
# Backward compatibility: if content is still a string (shouldn't happen)
|
||||
contexts.append(content)
|
||||
|
||||
return {
|
||||
"answer": answer,
|
||||
|
|
@ -179,62 +347,82 @@ class RAGEvaluator:
|
|||
self,
|
||||
idx: int,
|
||||
test_case: Dict[str, str],
|
||||
semaphore: asyncio.Semaphore,
|
||||
rag_semaphore: asyncio.Semaphore,
|
||||
eval_semaphore: asyncio.Semaphore,
|
||||
client: httpx.AsyncClient,
|
||||
progress_counter: Dict[str, int],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Evaluate a single test case with concurrency control
|
||||
Evaluate a single test case with two-stage pipeline concurrency control
|
||||
|
||||
Args:
|
||||
idx: Test case index (1-based)
|
||||
test_case: Test case dictionary with question and ground_truth
|
||||
semaphore: Semaphore to control concurrency
|
||||
rag_semaphore: Semaphore to control RAG generation concurrency (Stage 1)
|
||||
eval_semaphore: Semaphore to control RAGAS evaluation concurrency (Stage 2)
|
||||
client: Shared httpx AsyncClient for connection pooling
|
||||
progress_counter: Shared dictionary for progress tracking
|
||||
|
||||
Returns:
|
||||
Evaluation result dictionary
|
||||
"""
|
||||
async with semaphore:
|
||||
question = test_case["question"]
|
||||
ground_truth = test_case["ground_truth"]
|
||||
question = test_case["question"]
|
||||
ground_truth = test_case["ground_truth"]
|
||||
|
||||
print(f"[{idx}/{len(self.test_cases)}] Evaluating: {question[:60]}...")
|
||||
|
||||
# Generate RAG response by calling actual LightRAG API
|
||||
rag_response = await self.generate_rag_response(
|
||||
question=question, client=client
|
||||
)
|
||||
|
||||
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
|
||||
retrieved_contexts = rag_response["contexts"]
|
||||
|
||||
# DEBUG: Print what was actually retrieved
|
||||
print(f" 📝 Retrieved {len(retrieved_contexts)} contexts")
|
||||
if retrieved_contexts:
|
||||
print(f" 📄 First context preview: {retrieved_contexts[0][:100]}...")
|
||||
else:
|
||||
print(" ⚠️ WARNING: No contexts retrieved!")
|
||||
|
||||
# Prepare dataset for RAGAS evaluation with CORRECT contexts
|
||||
eval_dataset = Dataset.from_dict(
|
||||
{
|
||||
"question": [question],
|
||||
"answer": [rag_response["answer"]],
|
||||
"contexts": [retrieved_contexts],
|
||||
"ground_truth": [ground_truth],
|
||||
}
|
||||
)
|
||||
|
||||
# Run RAGAS evaluation
|
||||
# Stage 1: Generate RAG response (controlled by rag_semaphore)
|
||||
async with rag_semaphore:
|
||||
try:
|
||||
rag_response = await self.generate_rag_response(
|
||||
question=question, client=client
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error("Error generating response for test %s: %s", idx, str(e))
|
||||
progress_counter["completed"] += 1
|
||||
return {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"error": str(e),
|
||||
"metrics": {},
|
||||
"ragas_score": 0,
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
|
||||
retrieved_contexts = rag_response["contexts"]
|
||||
|
||||
# DEBUG: Print what was actually retrieved (only in debug mode)
|
||||
logger.debug("📝 Test %s: Retrieved %s contexts", idx, len(retrieved_contexts))
|
||||
|
||||
# Prepare dataset for RAGAS evaluation with CORRECT contexts
|
||||
eval_dataset = Dataset.from_dict(
|
||||
{
|
||||
"question": [question],
|
||||
"answer": [rag_response["answer"]],
|
||||
"contexts": [retrieved_contexts],
|
||||
"ground_truth": [ground_truth],
|
||||
}
|
||||
)
|
||||
|
||||
# Stage 2: Run RAGAS evaluation (controlled by eval_semaphore)
|
||||
# IMPORTANT: Create fresh metric instances for each evaluation to avoid
|
||||
# concurrent state conflicts when multiple tasks run in parallel
|
||||
async with eval_semaphore:
|
||||
pbar = None
|
||||
try:
|
||||
# Create standard tqdm progress bar for RAGAS evaluation
|
||||
pbar = tqdm(total=4, desc=f"Eval-{idx}", leave=True)
|
||||
|
||||
eval_results = evaluate(
|
||||
dataset=eval_dataset,
|
||||
metrics=[
|
||||
faithfulness,
|
||||
answer_relevancy,
|
||||
context_recall,
|
||||
context_precision,
|
||||
Faithfulness(),
|
||||
AnswerRelevancy(),
|
||||
ContextRecall(),
|
||||
ContextPrecision(),
|
||||
],
|
||||
llm=self.eval_llm,
|
||||
embeddings=self.eval_embeddings,
|
||||
_pbar=pbar,
|
||||
)
|
||||
|
||||
# Convert to DataFrame (RAGAS v0.3+ API)
|
||||
|
|
@ -245,6 +433,7 @@ class RAGEvaluator:
|
|||
|
||||
# Extract scores (RAGAS v0.3+ uses .to_pandas())
|
||||
result = {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"answer": rag_response["answer"][:200] + "..."
|
||||
if len(rag_response["answer"]) > 200
|
||||
|
|
@ -252,7 +441,7 @@ class RAGEvaluator:
|
|||
"ground_truth": ground_truth[:200] + "..."
|
||||
if len(ground_truth) > 200
|
||||
else ground_truth,
|
||||
"project": test_case.get("project_context", "unknown"),
|
||||
"project": test_case.get("project", "unknown"),
|
||||
"metrics": {
|
||||
"faithfulness": float(scores_row.get("faithfulness", 0)),
|
||||
"answer_relevance": float(
|
||||
|
|
@ -266,67 +455,87 @@ class RAGEvaluator:
|
|||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# Calculate RAGAS score (average of all metrics)
|
||||
# Calculate RAGAS score (average of all metrics, excluding NaN values)
|
||||
metrics = result["metrics"]
|
||||
ragas_score = sum(metrics.values()) / len(metrics) if metrics else 0
|
||||
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
|
||||
ragas_score = (
|
||||
sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
|
||||
)
|
||||
result["ragas_score"] = round(ragas_score, 4)
|
||||
|
||||
# Print metrics
|
||||
print(f" ✅ Faithfulness: {metrics['faithfulness']:.4f}")
|
||||
print(f" ✅ Answer Relevance: {metrics['answer_relevance']:.4f}")
|
||||
print(f" ✅ Context Recall: {metrics['context_recall']:.4f}")
|
||||
print(f" ✅ Context Precision: {metrics['context_precision']:.4f}")
|
||||
print(f" 📊 RAGAS Score: {result['ragas_score']:.4f}\n")
|
||||
# Update progress counter
|
||||
progress_counter["completed"] += 1
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
import traceback
|
||||
|
||||
print(f" ❌ Error evaluating: {str(e)}")
|
||||
print(f" 🔍 Full traceback:\n{traceback.format_exc()}\n")
|
||||
logger.error("Error evaluating test %s: %s", idx, str(e))
|
||||
progress_counter["completed"] += 1
|
||||
return {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"error": str(e),
|
||||
"metrics": {},
|
||||
"ragas_score": 0,
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
finally:
|
||||
# Force close progress bar to ensure completion
|
||||
if pbar is not None:
|
||||
pbar.close()
|
||||
|
||||
async def evaluate_responses(self) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Evaluate all test cases in parallel and return metrics
|
||||
Evaluate all test cases in parallel with two-stage pipeline and return metrics
|
||||
|
||||
Returns:
|
||||
List of evaluation results with metrics
|
||||
"""
|
||||
# Get MAX_ASYNC from environment (default to 4 if not set)
|
||||
max_async = int(os.getenv("MAX_ASYNC", "4"))
|
||||
# Get evaluation concurrency from environment (default to 2 for parallel evaluation)
|
||||
max_async = int(os.getenv("EVAL_MAX_CONCURRENT", "2"))
|
||||
|
||||
print("\n" + "=" * 70)
|
||||
print("🚀 Starting RAGAS Evaluation of Portfolio RAG System")
|
||||
print(f"🔧 Parallel evaluations: {max_async}")
|
||||
print("=" * 70 + "\n")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("🚀 Starting RAGAS Evaluation of LightRAG System")
|
||||
logger.info("🔧 Two-Stage Pipeline Configuration:")
|
||||
logger.info(" • RAGAS Evaluation (Stage 2): %s concurrent", max_async)
|
||||
logger.info("%s", "=" * 70)
|
||||
|
||||
# Create semaphore to limit concurrent evaluations
|
||||
semaphore = asyncio.Semaphore(max_async)
|
||||
# Create two-stage pipeline semaphores
|
||||
# Stage 1: RAG generation - allow +1 concurrency to keep evaluation fed
|
||||
rag_semaphore = asyncio.Semaphore(max_async + 1)
|
||||
# Stage 2: RAGAS evaluation - primary bottleneck
|
||||
eval_semaphore = asyncio.Semaphore(max_async)
|
||||
|
||||
# Create progress counter (shared across all tasks)
|
||||
progress_counter = {"completed": 0}
|
||||
|
||||
# Create shared HTTP client with connection pooling and proper timeouts
|
||||
# Timeout: 3 minutes for connect, 5 minutes for read (LLM can be slow)
|
||||
timeout = httpx.Timeout(180.0, connect=180.0, read=300.0)
|
||||
timeout = httpx.Timeout(
|
||||
TOTAL_TIMEOUT_SECONDS,
|
||||
connect=CONNECT_TIMEOUT_SECONDS,
|
||||
read=READ_TIMEOUT_SECONDS,
|
||||
)
|
||||
limits = httpx.Limits(
|
||||
max_connections=max_async * 2, # Allow some buffer
|
||||
max_keepalive_connections=max_async,
|
||||
max_connections=(max_async + 1) * 2, # Allow buffer for RAG stage
|
||||
max_keepalive_connections=max_async + 1,
|
||||
)
|
||||
|
||||
async with httpx.AsyncClient(timeout=timeout, limits=limits) as client:
|
||||
# Create tasks for all test cases
|
||||
tasks = [
|
||||
self.evaluate_single_case(idx, test_case, semaphore, client)
|
||||
self.evaluate_single_case(
|
||||
idx,
|
||||
test_case,
|
||||
rag_semaphore,
|
||||
eval_semaphore,
|
||||
client,
|
||||
progress_counter,
|
||||
)
|
||||
for idx, test_case in enumerate(self.test_cases, 1)
|
||||
]
|
||||
|
||||
# Run all evaluations in parallel (limited by semaphore)
|
||||
# Run all evaluations in parallel (limited by two-stage semaphores)
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
return list(results)
|
||||
|
|
@ -391,6 +600,94 @@ class RAGEvaluator:
|
|||
|
||||
return csv_path
|
||||
|
||||
def _format_metric(self, value: float, width: int = 6) -> str:
|
||||
"""
|
||||
Format a metric value for display, handling NaN gracefully
|
||||
|
||||
Args:
|
||||
value: The metric value to format
|
||||
width: The width of the formatted string
|
||||
|
||||
Returns:
|
||||
Formatted string (e.g., "0.8523" or " N/A ")
|
||||
"""
|
||||
if _is_nan(value):
|
||||
return "N/A".center(width)
|
||||
return f"{value:.4f}".rjust(width)
|
||||
|
||||
def _display_results_table(self, results: List[Dict[str, Any]]):
|
||||
"""
|
||||
Display evaluation results in a formatted table
|
||||
|
||||
Args:
|
||||
results: List of evaluation results
|
||||
"""
|
||||
logger.info("%s", "=" * 115)
|
||||
logger.info("📊 EVALUATION RESULTS SUMMARY")
|
||||
logger.info("%s", "=" * 115)
|
||||
|
||||
# Table header
|
||||
logger.info(
|
||||
"%-4s | %-50s | %6s | %7s | %6s | %7s | %6s | %6s",
|
||||
"#",
|
||||
"Question",
|
||||
"Faith",
|
||||
"AnswRel",
|
||||
"CtxRec",
|
||||
"CtxPrec",
|
||||
"RAGAS",
|
||||
"Status",
|
||||
)
|
||||
logger.info("%s", "-" * 115)
|
||||
|
||||
# Table rows
|
||||
for result in results:
|
||||
test_num = result.get("test_number", 0)
|
||||
question = result.get("question", "")
|
||||
# Truncate question to 50 chars
|
||||
question_display = (
|
||||
(question[:47] + "...") if len(question) > 50 else question
|
||||
)
|
||||
|
||||
metrics = result.get("metrics", {})
|
||||
if metrics:
|
||||
# Success case - format each metric, handling NaN values
|
||||
faith = metrics.get("faithfulness", 0)
|
||||
ans_rel = metrics.get("answer_relevance", 0)
|
||||
ctx_rec = metrics.get("context_recall", 0)
|
||||
ctx_prec = metrics.get("context_precision", 0)
|
||||
ragas = result.get("ragas_score", 0)
|
||||
status = "✓"
|
||||
|
||||
logger.info(
|
||||
"%-4d | %-50s | %s | %s | %s | %s | %s | %6s",
|
||||
test_num,
|
||||
question_display,
|
||||
self._format_metric(faith, 6),
|
||||
self._format_metric(ans_rel, 7),
|
||||
self._format_metric(ctx_rec, 6),
|
||||
self._format_metric(ctx_prec, 7),
|
||||
self._format_metric(ragas, 6),
|
||||
status,
|
||||
)
|
||||
else:
|
||||
# Error case
|
||||
error = result.get("error", "Unknown error")
|
||||
error_display = (error[:20] + "...") if len(error) > 23 else error
|
||||
logger.info(
|
||||
"%-4d | %-50s | %6s | %7s | %6s | %7s | %6s | ✗ %s",
|
||||
test_num,
|
||||
question_display,
|
||||
"N/A",
|
||||
"N/A",
|
||||
"N/A",
|
||||
"N/A",
|
||||
"N/A",
|
||||
error_display,
|
||||
)
|
||||
|
||||
logger.info("%s", "=" * 115)
|
||||
|
||||
def _calculate_benchmark_stats(
|
||||
self, results: List[Dict[str, Any]]
|
||||
) -> Dict[str, Any]:
|
||||
|
|
@ -417,69 +714,61 @@ class RAGEvaluator:
|
|||
"success_rate": 0.0,
|
||||
}
|
||||
|
||||
# Calculate averages for each metric (handling NaN values)
|
||||
import math
|
||||
|
||||
metrics_sum = {
|
||||
"faithfulness": 0.0,
|
||||
"answer_relevance": 0.0,
|
||||
"context_recall": 0.0,
|
||||
"context_precision": 0.0,
|
||||
"ragas_score": 0.0,
|
||||
# Calculate averages for each metric (handling NaN values correctly)
|
||||
# Track both sum and count for each metric to handle NaN values properly
|
||||
metrics_data = {
|
||||
"faithfulness": {"sum": 0.0, "count": 0},
|
||||
"answer_relevance": {"sum": 0.0, "count": 0},
|
||||
"context_recall": {"sum": 0.0, "count": 0},
|
||||
"context_precision": {"sum": 0.0, "count": 0},
|
||||
"ragas_score": {"sum": 0.0, "count": 0},
|
||||
}
|
||||
|
||||
for result in valid_results:
|
||||
metrics = result.get("metrics", {})
|
||||
# Skip NaN values when summing
|
||||
|
||||
# For each metric, sum non-NaN values and count them
|
||||
faithfulness = metrics.get("faithfulness", 0)
|
||||
if (
|
||||
not math.isnan(faithfulness)
|
||||
if isinstance(faithfulness, float)
|
||||
else True
|
||||
):
|
||||
metrics_sum["faithfulness"] += faithfulness
|
||||
if not _is_nan(faithfulness):
|
||||
metrics_data["faithfulness"]["sum"] += faithfulness
|
||||
metrics_data["faithfulness"]["count"] += 1
|
||||
|
||||
answer_relevance = metrics.get("answer_relevance", 0)
|
||||
if (
|
||||
not math.isnan(answer_relevance)
|
||||
if isinstance(answer_relevance, float)
|
||||
else True
|
||||
):
|
||||
metrics_sum["answer_relevance"] += answer_relevance
|
||||
if not _is_nan(answer_relevance):
|
||||
metrics_data["answer_relevance"]["sum"] += answer_relevance
|
||||
metrics_data["answer_relevance"]["count"] += 1
|
||||
|
||||
context_recall = metrics.get("context_recall", 0)
|
||||
if (
|
||||
not math.isnan(context_recall)
|
||||
if isinstance(context_recall, float)
|
||||
else True
|
||||
):
|
||||
metrics_sum["context_recall"] += context_recall
|
||||
if not _is_nan(context_recall):
|
||||
metrics_data["context_recall"]["sum"] += context_recall
|
||||
metrics_data["context_recall"]["count"] += 1
|
||||
|
||||
context_precision = metrics.get("context_precision", 0)
|
||||
if (
|
||||
not math.isnan(context_precision)
|
||||
if isinstance(context_precision, float)
|
||||
else True
|
||||
):
|
||||
metrics_sum["context_precision"] += context_precision
|
||||
if not _is_nan(context_precision):
|
||||
metrics_data["context_precision"]["sum"] += context_precision
|
||||
metrics_data["context_precision"]["count"] += 1
|
||||
|
||||
ragas_score = result.get("ragas_score", 0)
|
||||
if not math.isnan(ragas_score) if isinstance(ragas_score, float) else True:
|
||||
metrics_sum["ragas_score"] += ragas_score
|
||||
if not _is_nan(ragas_score):
|
||||
metrics_data["ragas_score"]["sum"] += ragas_score
|
||||
metrics_data["ragas_score"]["count"] += 1
|
||||
|
||||
# Calculate averages
|
||||
n = len(valid_results)
|
||||
# Calculate averages using actual counts for each metric
|
||||
avg_metrics = {}
|
||||
for k, v in metrics_sum.items():
|
||||
avg_val = v / n if n > 0 else 0
|
||||
# Handle NaN in average
|
||||
avg_metrics[k] = round(avg_val, 4) if not math.isnan(avg_val) else 0.0
|
||||
for metric_name, data in metrics_data.items():
|
||||
if data["count"] > 0:
|
||||
avg_val = data["sum"] / data["count"]
|
||||
avg_metrics[metric_name] = (
|
||||
round(avg_val, 4) if not _is_nan(avg_val) else 0.0
|
||||
)
|
||||
else:
|
||||
avg_metrics[metric_name] = 0.0
|
||||
|
||||
# Find min and max RAGAS scores (filter out NaN)
|
||||
ragas_scores = []
|
||||
for r in valid_results:
|
||||
score = r.get("ragas_score", 0)
|
||||
if isinstance(score, float) and math.isnan(score):
|
||||
if _is_nan(score):
|
||||
continue # Skip NaN values
|
||||
ragas_scores.append(score)
|
||||
|
||||
|
|
@ -525,43 +814,57 @@ class RAGEvaluator:
|
|||
)
|
||||
with open(json_path, "w") as f:
|
||||
json.dump(summary, f, indent=2)
|
||||
print(f"✅ JSON results saved to: {json_path}")
|
||||
|
||||
# Display results table
|
||||
self._display_results_table(results)
|
||||
|
||||
logger.info("✅ JSON results saved to: %s", json_path)
|
||||
|
||||
# Export to CSV
|
||||
csv_path = self._export_to_csv(results)
|
||||
print(f"✅ CSV results saved to: {csv_path}")
|
||||
logger.info("✅ CSV results saved to: %s", csv_path)
|
||||
|
||||
# Print summary
|
||||
print("\n" + "=" * 70)
|
||||
print("📊 EVALUATION COMPLETE")
|
||||
print("=" * 70)
|
||||
print(f"Total Tests: {len(results)}")
|
||||
print(f"Successful: {benchmark_stats['successful_tests']}")
|
||||
print(f"Failed: {benchmark_stats['failed_tests']}")
|
||||
print(f"Success Rate: {benchmark_stats['success_rate']:.2f}%")
|
||||
print(f"Elapsed Time: {elapsed_time:.2f} seconds")
|
||||
print(f"Avg Time/Test: {elapsed_time / len(results):.2f} seconds")
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("📊 EVALUATION COMPLETE")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("Total Tests: %s", len(results))
|
||||
logger.info("Successful: %s", benchmark_stats["successful_tests"])
|
||||
logger.info("Failed: %s", benchmark_stats["failed_tests"])
|
||||
logger.info("Success Rate: %.2f%%", benchmark_stats["success_rate"])
|
||||
logger.info("Elapsed Time: %.2f seconds", elapsed_time)
|
||||
logger.info("Avg Time/Test: %.2f seconds", elapsed_time / len(results))
|
||||
|
||||
# Print benchmark metrics
|
||||
print("\n" + "=" * 70)
|
||||
print("📈 BENCHMARK RESULTS (Averages)")
|
||||
print("=" * 70)
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("📈 BENCHMARK RESULTS (Average)")
|
||||
logger.info("%s", "=" * 70)
|
||||
avg = benchmark_stats["average_metrics"]
|
||||
print(f"Average Faithfulness: {avg['faithfulness']:.4f}")
|
||||
print(f"Average Answer Relevance: {avg['answer_relevance']:.4f}")
|
||||
print(f"Average Context Recall: {avg['context_recall']:.4f}")
|
||||
print(f"Average Context Precision: {avg['context_precision']:.4f}")
|
||||
print(f"Average RAGAS Score: {avg['ragas_score']:.4f}")
|
||||
print(f"\nMin RAGAS Score: {benchmark_stats['min_ragas_score']:.4f}")
|
||||
print(f"Max RAGAS Score: {benchmark_stats['max_ragas_score']:.4f}")
|
||||
logger.info("Average Faithfulness: %.4f", avg["faithfulness"])
|
||||
logger.info("Average Answer Relevance: %.4f", avg["answer_relevance"])
|
||||
logger.info("Average Context Recall: %.4f", avg["context_recall"])
|
||||
logger.info("Average Context Precision: %.4f", avg["context_precision"])
|
||||
logger.info("Average RAGAS Score: %.4f", avg["ragas_score"])
|
||||
logger.info("")
|
||||
logger.info(
|
||||
"Min RAGAS Score: %.4f",
|
||||
benchmark_stats["min_ragas_score"],
|
||||
)
|
||||
logger.info(
|
||||
"Max RAGAS Score: %.4f",
|
||||
benchmark_stats["max_ragas_score"],
|
||||
)
|
||||
|
||||
print("\n" + "=" * 70)
|
||||
print("📁 GENERATED FILES")
|
||||
print("=" * 70)
|
||||
print(f"Results Dir: {self.results_dir.absolute()}")
|
||||
print(f" • CSV: {csv_path.name}")
|
||||
print(f" • JSON: {json_path.name}")
|
||||
print("=" * 70 + "\n")
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("📁 GENERATED FILES")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("Results Dir: %s", self.results_dir.absolute())
|
||||
logger.info(" • CSV: %s", csv_path.name)
|
||||
logger.info(" • JSON: %s", json_path.name)
|
||||
logger.info("%s", "=" * 70)
|
||||
|
||||
return summary
|
||||
|
||||
|
|
@ -570,30 +873,64 @@ async def main():
|
|||
"""
|
||||
Main entry point for RAGAS evaluation
|
||||
|
||||
Command-line arguments:
|
||||
--dataset, -d: Path to test dataset JSON file (default: sample_dataset.json)
|
||||
--ragendpoint, -r: LightRAG API endpoint URL (default: http://localhost:9621 or $LIGHTRAG_API_URL)
|
||||
|
||||
Usage:
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
python lightrag/evaluation/eval_rag_quality.py http://localhost:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py http://your-server.com:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
||||
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
||||
"""
|
||||
try:
|
||||
# Get RAG API URL from command line or environment
|
||||
rag_api_url = None
|
||||
if len(sys.argv) > 1:
|
||||
rag_api_url = sys.argv[1]
|
||||
# Parse command-line arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
description="RAGAS Evaluation Script for LightRAG System",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
Examples:
|
||||
# Use defaults
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
|
||||
print("\n" + "=" * 70)
|
||||
print("🔍 RAGAS Evaluation - Using Real LightRAG API")
|
||||
print("=" * 70)
|
||||
if rag_api_url:
|
||||
print(f"📡 RAG API URL: {rag_api_url}")
|
||||
else:
|
||||
print("📡 RAG API URL: http://localhost:9621 (default)")
|
||||
print("=" * 70 + "\n")
|
||||
# Specify custom dataset
|
||||
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
||||
|
||||
evaluator = RAGEvaluator(rag_api_url=rag_api_url)
|
||||
# Specify custom RAG endpoint
|
||||
python lightrag/evaluation/eval_rag_quality.py --ragendpoint http://my-server.com:9621
|
||||
|
||||
# Specify both
|
||||
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
"-d",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to test dataset JSON file (default: sample_dataset.json in evaluation directory)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ragendpoint",
|
||||
"-r",
|
||||
type=str,
|
||||
default=None,
|
||||
help="LightRAG API endpoint URL (default: http://localhost:9621 or $LIGHTRAG_API_URL environment variable)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("🔍 RAGAS Evaluation - Using Real LightRAG API")
|
||||
logger.info("%s", "=" * 70)
|
||||
|
||||
evaluator = RAGEvaluator(
|
||||
test_dataset_path=args.dataset, rag_api_url=args.ragendpoint
|
||||
)
|
||||
await evaluator.run()
|
||||
except Exception as e:
|
||||
print(f"\n❌ Error: {str(e)}\n")
|
||||
logger.exception("❌ Error: %s", e)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue