Refactor node and edge merging logic with improved code structure

• Add numbered steps for clarity
• Improve early return handling
• Enhance file path limiting logic
This commit is contained in:
yangdx 2025-10-21 15:16:47 +08:00
parent a5253244f9
commit be3d274a0b

View file

@ -57,6 +57,7 @@ from lightrag.constants import (
SOURCE_IDS_LIMIT_METHOD_KEEP,
SOURCE_IDS_LIMIT_METHOD_FIFO,
DEFAULT_FILE_PATH_MORE_PLACEHOLDER,
DEFAULT_MAX_FILE_PATHS,
)
from lightrag.kg.shared_storage import get_storage_keyed_lock
import time
@ -1483,6 +1484,7 @@ async def _merge_nodes_then_upsert(
already_description = []
already_file_paths = []
# 1. Get existing node data from knowledge graph
already_node = await knowledge_graph_inst.get_node(entity_name)
if already_node:
already_entity_types.append(already_node["entity_type"])
@ -1490,14 +1492,6 @@ async def _merge_nodes_then_upsert(
already_file_paths.extend(already_node["file_path"].split(GRAPH_FIELD_SEP))
already_description.extend(already_node["description"].split(GRAPH_FIELD_SEP))
entity_type = sorted(
Counter(
[dp["entity_type"] for dp in nodes_data] + already_entity_types
).items(),
key=lambda x: x[1],
reverse=True,
)[0][0] # Get the entity type with the highest count
new_source_ids = [dp["source_id"] for dp in nodes_data if dp.get("source_id")]
existing_full_source_ids = []
@ -1513,6 +1507,7 @@ async def _merge_nodes_then_upsert(
chunk_id for chunk_id in already_source_ids if chunk_id
]
# 2. Merging new source ids with existing ones
full_source_ids = merge_source_ids(existing_full_source_ids, new_source_ids)
if entity_chunks_storage is not None and full_source_ids:
@ -1525,6 +1520,7 @@ async def _merge_nodes_then_upsert(
}
)
# 3. Finalize source_id by applying source ids limit
limit_method = global_config.get("source_ids_limit_method")
max_source_limit = global_config.get("max_source_ids_per_entity")
source_ids = apply_source_ids_limit(
@ -1534,7 +1530,7 @@ async def _merge_nodes_then_upsert(
identifier=f"`{entity_name}`",
)
# Only apply filtering in KEEP(ignore new) mode
# 4. Only keep nodes not filter by apply_source_ids_limit if limit_method is KEEP
if limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP:
allowed_source_ids = set(source_ids)
filtered_nodes = []
@ -1549,18 +1545,38 @@ async def _merge_nodes_then_upsert(
continue
filtered_nodes.append(dp)
nodes_data = filtered_nodes
else:
# In FIFO mode, keep all node descriptions - truncation happens at source_ids level only
else: # In FIFO mode, keep all nodes - truncation happens at source_ids level only
nodes_data = list(nodes_data)
skip_summary_due_to_limit = (
# 5. Check if we need to skip summary due to source_ids limit
if (
limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP
and len(existing_full_source_ids) >= max_source_limit
and not nodes_data
and already_description
)
):
if already_node:
logger.info(f"Skipped `{entity_name}`: KEEP old chunks")
existing_node_data = dict(already_node)
return existing_node_data
else:
logger.error(f"Internal Error: already_node missing for `{entity_name}`")
raise ValueError(
f"Internal Error: already_node missing for `{entity_name}`"
)
# Deduplicate by description, keeping first occurrence
# 6.1 Finalize source_id
source_id = GRAPH_FIELD_SEP.join(source_ids)
# 6.2 Finalize entity type by highest count
entity_type = sorted(
Counter(
[dp["entity_type"] for dp in nodes_data] + already_entity_types
).items(),
key=lambda x: x[1],
reverse=True,
)[0][0]
# 7. Deduplicate nodes by description, keeping first occurrence in the same document
unique_nodes = {}
for dp in nodes_data:
desc = dp.get("description")
@ -1569,154 +1585,121 @@ async def _merge_nodes_then_upsert(
if desc not in unique_nodes:
unique_nodes[desc] = dp
# Sort description by timestamp, then by description length (largest to smallest) when timestamps are the same
# Sort description by timestamp, then by description length when timestamps are the same
sorted_nodes = sorted(
unique_nodes.values(),
key=lambda x: (x.get("timestamp", 0), -len(x.get("description", ""))),
)
sorted_descriptions = [dp["description"] for dp in sorted_nodes]
truncation_info = ""
dd_message = ""
has_placeholder = False # Initialize to track placeholder in file paths
# Combine already_description with sorted new sorted descriptions
description_list = already_description + sorted_descriptions
num_fragment = len(description_list)
already_fragment = len(already_description)
deduplicated_num = already_fragment + len(nodes_data) - num_fragment
if deduplicated_num > 0:
dd_message = f"dd:{deduplicated_num}"
if skip_summary_due_to_limit:
logger.info(f"Skipped `{entity_name}`: KEEP old chunks")
description = (
already_node.get("description", "(no description)")
if already_node
else "(no description)"
)
existing_node_data = dict(already_node or {})
if not existing_node_data:
existing_node_data = {
"entity_id": entity_name,
"entity_type": entity_type,
"description": description,
"source_id": GRAPH_FIELD_SEP.join(existing_full_source_ids),
"file_path": GRAPH_FIELD_SEP.join(already_file_paths),
"created_at": int(time.time()),
"truncate": "",
}
existing_node_data["entity_name"] = entity_name
return existing_node_data
elif num_fragment > 0:
# Get summary and LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Entity",
entity_name,
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
# Log based on actual LLM usage
if llm_was_used:
status_message = f"LLMmrg: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
# Add truncation info from apply_source_ids_limit if truncation occurred
if len(source_ids) < len(full_source_ids):
# Add + sign if has_placeholder is True, indicating actual file count is higher
full_source_count_str = (
f"{len(full_source_ids)}+"
if has_placeholder
else str(len(full_source_ids))
)
truncation_info = (
f"{limit_method}:{len(source_ids)}/{full_source_count_str}"
)
if dd_message or truncation_info:
status_message += (
f" ({', '.join(filter(None, [truncation_info, dd_message]))})"
)
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
else:
logger.debug(status_message)
else:
if not description_list:
logger.error(f"Entity {entity_name} has no description")
description = "(no description)"
raise ValueError(f"Entity {entity_name} has no description")
source_id = GRAPH_FIELD_SEP.join(source_ids)
# 8. Get summary description an LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Entity",
entity_name,
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
# Build file_path with count limit
if skip_summary_due_to_limit:
# Skip limit, keep original file_path
file_path = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp)
else:
# Collect and apply limit
file_paths_list = []
seen_paths = set()
has_placeholder = False # Track if already_file_paths contains placeholder
# 9. Build file_path within MAX_FILE_PATHS
file_paths_list = []
seen_paths = set()
has_placeholder = False # Indicating file_path has been truncated before
# Get placeholder to filter it out
max_file_paths = global_config.get("max_file_paths", DEFAULT_MAX_FILE_PATHS)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
if fp and fp.startswith(f"...{file_path_placeholder}"): # Skip placeholders
has_placeholder = True
continue
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
# Collect from new data
for dp in nodes_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
# Apply count limit
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Add + sign to indicate actual file count is higher
original_count_str = (
f"{len(file_paths_list)}+" if has_placeholder else str(len(file_paths_list))
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
# Check if this is a placeholder record
if fp and fp.startswith(f"...{file_path_placeholder}"): # Skip placeholders
has_placeholder = True
continue
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
# Collect from new data
for dp in nodes_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
file_paths_list.append(f"...{file_path_placeholder}({limit_method})...")
logger.info(
f"Limited `{entity_name}`: file_path {original_count_str} -> {max_file_paths} ({limit_method})"
)
# Finalize file_path
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
# Apply count limit
max_file_paths = global_config.get("max_file_paths")
# 10.Log based on actual LLM usage
num_fragment = len(description_list)
already_fragment = len(already_description)
if llm_was_used:
status_message = f"LLMmrg: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
original_count = len(file_paths_list)
truncation_info = truncation_info_log = ""
if len(source_ids) < len(full_source_ids):
# Add truncation info from apply_source_ids_limit if truncation occurred
truncation_info_log = f"{limit_method} {len(source_ids)}/{len(full_source_ids)}"
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
truncation_info = truncation_info_log
else:
truncation_info = "Keep Old Chunks"
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
deduplicated_num = already_fragment + len(nodes_data) - num_fragment
dd_message = ""
if deduplicated_num > 0:
# Duplicated description detected across multiple trucks for the same entity
dd_message = f"dd {deduplicated_num}"
file_paths_list.append(
f"...{file_path_placeholder}({limit_method}:{max_file_paths}/{original_count})..."
)
logger.info(
f"Limited `{entity_name}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
)
if dd_message or truncation_info_log:
status_message += (
f" ({', '.join(filter(None, [truncation_info_log, dd_message]))})"
)
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
# Add message to pipeline satus when merge happens
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
else:
logger.debug(status_message)
# 11. Update both graph and vector db
node_data = dict(
entity_id=entity_name,
entity_type=entity_type,
@ -1777,6 +1760,7 @@ async def _merge_edges_then_upsert(
already_keywords = []
already_file_paths = []
# 1. Get existing edge data from graph storage
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
# Handle the case where get_edge returns None or missing fields
@ -1826,6 +1810,7 @@ async def _merge_edges_then_upsert(
chunk_id for chunk_id in already_source_ids if chunk_id
]
# 2. Merge new source ids with existing ones
full_source_ids = merge_source_ids(existing_full_source_ids, new_source_ids)
if relation_chunks_storage is not None and full_source_ids:
@ -1838,6 +1823,7 @@ async def _merge_edges_then_upsert(
}
)
# 3. Finalize source_id by applying source ids limit
limit_method = global_config.get("source_ids_limit_method")
max_source_limit = global_config.get("max_source_ids_per_relation")
source_ids = apply_source_ids_limit(
@ -1850,7 +1836,7 @@ async def _merge_edges_then_upsert(
global_config.get("source_ids_limit_method") or SOURCE_IDS_LIMIT_METHOD_KEEP
)
# Only apply filtering in KEEP(ignore new) mode
# 4. Only keep edges with source_id in the final source_ids list if in KEEP mode
if limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP:
allowed_source_ids = set(source_ids)
filtered_edges = []
@ -1865,21 +1851,49 @@ async def _merge_edges_then_upsert(
continue
filtered_edges.append(dp)
edges_data = filtered_edges
else:
# In FIFO mode, keep all edge descriptions - truncation happens at source_ids level only
else: # In FIFO mode, keep all edges - truncation happens at source_ids level only
edges_data = list(edges_data)
skip_summary_due_to_limit = (
# 5. Check if we need to skip summary due to source_ids limit
if (
limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP
and len(existing_full_source_ids) >= max_source_limit
and not edges_data
and already_description
)
):
if already_edge:
logger.info(f"Skipped `{src_id}`~`{tgt_id}`: KEEP old chunks")
existing_edge_data = dict(already_edge)
return existing_edge_data
else:
logger.error(
f"Internal Error: already_node missing for `{src_id}`~`{tgt_id}`"
)
raise ValueError(
f"Internal Error: already_node missing for `{src_id}`~`{tgt_id}`"
)
# Process edges_data with None checks
# 6.1 Finalize source_id
source_id = GRAPH_FIELD_SEP.join(source_ids)
# 6.2 Finalize weight by summing new edges and existing weights
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
# Deduplicate by description, keeping first occurrence
# 6.2 Finalize keywords by merging existing and new keywords
all_keywords = set()
# Process already_keywords (which are comma-separated)
for keyword_str in already_keywords:
if keyword_str: # Skip empty strings
all_keywords.update(k.strip() for k in keyword_str.split(",") if k.strip())
# Process new keywords from edges_data
for edge in edges_data:
if edge.get("keywords"):
all_keywords.update(
k.strip() for k in edge["keywords"].split(",") if k.strip()
)
# Join all unique keywords with commas
keywords = ",".join(sorted(all_keywords))
# 7. Deduplicate by description, keeping first occurrence in the same document
unique_edges = {}
for dp in edges_data:
description_value = dp.get("description")
@ -1895,165 +1909,122 @@ async def _merge_edges_then_upsert(
)
sorted_descriptions = [dp["description"] for dp in sorted_edges]
truncation_info = ""
dd_message = ""
has_placeholder = False # Initialize to track placeholder in file paths
# Combine already_description with sorted new descriptions
description_list = already_description + sorted_descriptions
if not description_list:
logger.error(f"Relation {src_id}~{tgt_id} has no description")
raise ValueError(f"Relation {src_id}~{tgt_id} has no description")
num_fragment = len(description_list)
already_fragment = len(already_description)
deduplicated_num = already_fragment + len(edges_data) - num_fragment
if deduplicated_num > 0:
dd_message = f"dd:{deduplicated_num}"
# 8. Get summary description an LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Relation",
f"({src_id}, {tgt_id})",
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
if skip_summary_due_to_limit:
logger.info(f"Skipped `{src_id}`~`{tgt_id}`: KEEP old chunks")
description = (
already_edge.get("description", "(no description)")
if already_edge
else "(no description)"
# 9. Build file_path within MAX_FILE_PATHS limit
file_paths_list = []
seen_paths = set()
has_placeholder = False # Track if already_file_paths contains placeholder
max_file_paths = global_config.get("max_file_paths", DEFAULT_MAX_FILE_PATHS)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
# Check if this is a placeholder record
if fp and fp.startswith(f"...{file_path_placeholder}"): # Skip placeholders
has_placeholder = True
continue
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
# Collect from new data
for dp in edges_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
# Apply count limit
max_file_paths = global_config.get("max_file_paths")
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
existing_edge_data = dict(already_edge or {})
if not existing_edge_data:
existing_edge_data = {
"description": description,
"keywords": GRAPH_FIELD_SEP.join(already_keywords),
"source_id": GRAPH_FIELD_SEP.join(existing_full_source_ids),
"file_path": GRAPH_FIELD_SEP.join(already_file_paths),
"weight": sum(already_weights) if already_weights else 0.0,
"truncate": "",
"created_at": int(time.time()),
}
existing_edge_data.setdefault("created_at", int(time.time()))
existing_edge_data["src_id"] = src_id
existing_edge_data["tgt_id"] = tgt_id
return existing_edge_data
elif num_fragment > 0:
# Get summary and LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Relation",
f"({src_id}, {tgt_id})",
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
# Log based on actual LLM usage
if llm_was_used:
status_message = f"LLMmrg: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
# Add truncation info from apply_source_ids_limit if truncation occurred
if len(source_ids) < len(full_source_ids):
# Add + sign if has_placeholder is True, indicating actual file count is higher
full_source_count_str = (
f"{len(full_source_ids)}+"
if has_placeholder
else str(len(full_source_ids))
)
truncation_info = (
f"{limit_method}:{len(source_ids)}/{full_source_count_str}"
)
if dd_message or truncation_info:
status_message += (
f" ({', '.join(filter(None, [truncation_info, dd_message]))})"
)
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
else:
logger.debug(status_message)
else:
logger.error(f"Edge {src_id} - {tgt_id} has no description")
description = "(no description)"
# Split all existing and new keywords into individual terms, then combine and deduplicate
all_keywords = set()
# Process already_keywords (which are comma-separated)
for keyword_str in already_keywords:
if keyword_str: # Skip empty strings
all_keywords.update(k.strip() for k in keyword_str.split(",") if k.strip())
# Process new keywords from edges_data
for edge in edges_data:
if edge.get("keywords"):
all_keywords.update(
k.strip() for k in edge["keywords"].split(",") if k.strip()
)
# Join all unique keywords with commas
keywords = ",".join(sorted(all_keywords))
source_id = GRAPH_FIELD_SEP.join(source_ids)
# Build file_path with count limit
if skip_summary_due_to_limit:
# Skip limit, keep original file_path
file_path = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp)
else:
# Collect and apply limit
file_paths_list = []
seen_paths = set()
has_placeholder = False # Track if already_file_paths contains placeholder
# Get placeholder to filter it out
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
# Check if this is a placeholder record
if fp and fp.startswith(f"...{file_path_placeholder}"): # Skip placeholders
has_placeholder = True
continue
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
# Add + sign to indicate actual file count is higher
original_count_str = (
f"{len(file_paths_list)}+" if has_placeholder else str(len(file_paths_list))
)
# Collect from new data
for dp in edges_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
# Apply count limit
max_file_paths = global_config.get("max_file_paths")
# Add + sign if has_placeholder is True, indicating actual file count is higher
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
original_count = len(file_paths_list)
file_paths_list.append(
f"...{file_path_placeholder}({limit_method}:{max_file_paths}/{original_count_str})..."
)
logger.info(
f"Limited `{src_id}`~`{tgt_id}`: file_path {original_count_str} -> {max_file_paths} ({limit_method})"
)
# Finalize file_path
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
# 10. Log based on actual LLM usage
num_fragment = len(description_list)
already_fragment = len(already_description)
if llm_was_used:
status_message = f"LLMmrg: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
file_paths_list.append(
f"...{file_path_placeholder}({limit_method}:{max_file_paths}/{original_count})..."
)
logger.info(
f"Limited `{src_id}`~`{tgt_id}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
)
truncation_info = truncation_info_log = ""
if len(source_ids) < len(full_source_ids):
# Add truncation info from apply_source_ids_limit if truncation occurred
truncation_info_log = f"{limit_method} {len(source_ids)}/{len(full_source_ids)}"
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
truncation_info = truncation_info_log
else:
truncation_info = "Keep Old Chunks"
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
deduplicated_num = already_fragment + len(edges_data) - num_fragment
dd_message = ""
if deduplicated_num > 0:
# Duplicated description detected across multiple trucks for the same entity
dd_message = f"dd {deduplicated_num}"
if dd_message or truncation_info_log:
status_message += (
f" ({', '.join(filter(None, [truncation_info_log, dd_message]))})"
)
# Add message to pipeline satus when merge happens
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
else:
logger.debug(status_message)
# 11. Update both graph and vector db
for need_insert_id in [src_id, tgt_id]:
if not (await knowledge_graph_inst.has_node(need_insert_id)):
node_created_at = int(time.time())