diff --git a/.gitignore b/.gitignore index 2773b704..cb9f3049 100644 --- a/.gitignore +++ b/.gitignore @@ -72,3 +72,4 @@ test_* # Cline files memory-bank memory-bank/ +.clinerules diff --git a/env.example b/env.example index e322e582..187a7064 100644 --- a/env.example +++ b/env.example @@ -71,10 +71,20 @@ ENABLE_LLM_CACHE=true # MAX_RELATION_TOKENS=10000 ### control the maximum tokens send to LLM (include entities, raltions and chunks) # MAX_TOTAL_TOKENS=30000 -### maximum number of related chunks per source entity or relation (higher values increase re-ranking time) + +### maximum number of related chunks per source entity or relation +### The chunk picker uses this value to determine the total number of chunks selected from KG(knowledge graph) +### Higher values increase re-ranking time # RELATED_CHUNK_NUMBER=5 -### Reranker configuration (Set ENABLE_RERANK to true in reranking model is configed) +### chunk selection strategies +### VECTOR: Pick KG chunks by vector similarity, delivered chunks to the LLM aligning more closely with naive retrieval +### WEIGHT: Pick KG chunks by entity and chunk weight, delivered more solely KG related chunks to the LLM +### If reranking is enabled, the impact of chunk selection strategies will be diminished. +# KG_CHUNK_PICK_METHOD=VECTOR + +### Reranking configuration +### Reranker Set ENABLE_RERANK to true in reranking model is configed # ENABLE_RERANK=True ### Minimum rerank score for document chunk exclusion (set to 0.0 to keep all chunks, 0.6 or above if LLM is not strong enought) # MIN_RERANK_SCORE=0.0 @@ -258,7 +268,7 @@ POSTGRES_IVFFLAT_LISTS=100 NEO4J_URI=neo4j+s://xxxxxxxx.databases.neo4j.io NEO4J_USERNAME=neo4j NEO4J_PASSWORD='your_password' -# NEO4J_DATABASE=chunk_entity_relation +# NEO4J_DATABASE=chunk-entity-relation NEO4J_MAX_CONNECTION_POOL_SIZE=100 NEO4J_CONNECTION_TIMEOUT=30 NEO4J_CONNECTION_ACQUISITION_TIMEOUT=30 diff --git a/lightrag/base.py b/lightrag/base.py index 0e651f7b..9ba34280 100644 --- a/lightrag/base.py +++ b/lightrag/base.py @@ -290,6 +290,19 @@ class BaseVectorStorage(StorageNameSpace, ABC): ids: List of vector IDs to be deleted """ + @abstractmethod + async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]: + """Get vectors by their IDs, returning only ID and vector data for efficiency + + Args: + ids: List of unique identifiers + + Returns: + Dictionary mapping IDs to their vector embeddings + Format: {id: [vector_values], ...} + """ + pass + @dataclass class BaseKVStorage(StorageNameSpace, ABC): diff --git a/lightrag/constants.py b/lightrag/constants.py index e66fe0ae..1c7917c1 100644 --- a/lightrag/constants.py +++ b/lightrag/constants.py @@ -27,6 +27,7 @@ DEFAULT_MAX_RELATION_TOKENS = 10000 DEFAULT_MAX_TOTAL_TOKENS = 30000 DEFAULT_COSINE_THRESHOLD = 0.2 DEFAULT_RELATED_CHUNK_NUMBER = 5 +DEFAULT_KG_CHUNK_PICK_METHOD = "VECTOR" # Deprated: history message have negtive effect on query performance DEFAULT_HISTORY_TURNS = 0 diff --git a/lightrag/kg/faiss_impl.py b/lightrag/kg/faiss_impl.py index 0ab95c43..5098ebf7 100644 --- a/lightrag/kg/faiss_impl.py +++ b/lightrag/kg/faiss_impl.py @@ -210,9 +210,11 @@ class FaissVectorDBStorage(BaseVectorStorage): continue meta = self._id_to_meta.get(idx, {}) + # Filter out __vector__ from query results to avoid returning large vector data + filtered_meta = {k: v for k, v in meta.items() if k != "__vector__"} results.append( { - **meta, + **filtered_meta, "id": meta.get("__id__"), "distance": float(dist), "created_at": meta.get("__created_at__"), @@ -424,8 +426,10 @@ class FaissVectorDBStorage(BaseVectorStorage): if not metadata: return None + # Filter out __vector__ from metadata to avoid returning large vector data + filtered_metadata = {k: v for k, v in metadata.items() if k != "__vector__"} return { - **metadata, + **filtered_metadata, "id": metadata.get("__id__"), "created_at": metadata.get("__created_at__"), } @@ -448,9 +452,13 @@ class FaissVectorDBStorage(BaseVectorStorage): if fid is not None: metadata = self._id_to_meta.get(fid, {}) if metadata: + # Filter out __vector__ from metadata to avoid returning large vector data + filtered_metadata = { + k: v for k, v in metadata.items() if k != "__vector__" + } results.append( { - **metadata, + **filtered_metadata, "id": metadata.get("__id__"), "created_at": metadata.get("__created_at__"), } @@ -458,6 +466,31 @@ class FaissVectorDBStorage(BaseVectorStorage): return results + async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]: + """Get vectors by their IDs, returning only ID and vector data for efficiency + + Args: + ids: List of unique identifiers + + Returns: + Dictionary mapping IDs to their vector embeddings + Format: {id: [vector_values], ...} + """ + if not ids: + return {} + + vectors_dict = {} + for id in ids: + # Find the Faiss internal ID for the custom ID + fid = self._find_faiss_id_by_custom_id(id) + if fid is not None and fid in self._id_to_meta: + metadata = self._id_to_meta[fid] + # Get the stored vector from metadata + if "__vector__" in metadata: + vectors_dict[id] = metadata["__vector__"] + + return vectors_dict + async def drop(self) -> dict[str, str]: """Drop all vector data from storage and clean up resources diff --git a/lightrag/kg/milvus_impl.py b/lightrag/kg/milvus_impl.py index 1aa41021..4d927353 100644 --- a/lightrag/kg/milvus_impl.py +++ b/lightrag/kg/milvus_impl.py @@ -1018,6 +1018,50 @@ class MilvusVectorDBStorage(BaseVectorStorage): ) return [] + async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]: + """Get vectors by their IDs, returning only ID and vector data for efficiency + + Args: + ids: List of unique identifiers + + Returns: + Dictionary mapping IDs to their vector embeddings + Format: {id: [vector_values], ...} + """ + if not ids: + return {} + + try: + # Ensure collection is loaded before querying + self._ensure_collection_loaded() + + # Prepare the ID filter expression + id_list = '", "'.join(ids) + filter_expr = f'id in ["{id_list}"]' + + # Query Milvus with the filter, requesting only vector field + result = self._client.query( + collection_name=self.final_namespace, + filter=filter_expr, + output_fields=["vector"], + ) + + vectors_dict = {} + for item in result: + if item and "vector" in item and "id" in item: + # Convert numpy array to list if needed + vector_data = item["vector"] + if isinstance(vector_data, np.ndarray): + vector_data = vector_data.tolist() + vectors_dict[item["id"]] = vector_data + + return vectors_dict + except Exception as e: + logger.error( + f"[{self.workspace}] Error retrieving vectors by IDs from {self.namespace}: {e}" + ) + return {} + async def drop(self) -> dict[str, str]: """Drop all vector data from storage and clean up resources diff --git a/lightrag/kg/mongo_impl.py b/lightrag/kg/mongo_impl.py index ff671c56..8fa53c60 100644 --- a/lightrag/kg/mongo_impl.py +++ b/lightrag/kg/mongo_impl.py @@ -1967,6 +1967,37 @@ class MongoVectorDBStorage(BaseVectorStorage): ) return [] + async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]: + """Get vectors by their IDs, returning only ID and vector data for efficiency + + Args: + ids: List of unique identifiers + + Returns: + Dictionary mapping IDs to their vector embeddings + Format: {id: [vector_values], ...} + """ + if not ids: + return {} + + try: + # Query MongoDB for the specified IDs, only retrieving the vector field + cursor = self._data.find({"_id": {"$in": ids}}, {"vector": 1}) + results = await cursor.to_list(length=None) + + vectors_dict = {} + for result in results: + if result and "vector" in result and "_id" in result: + # MongoDB stores vectors as arrays, so they should already be lists + vectors_dict[result["_id"]] = result["vector"] + + return vectors_dict + except PyMongoError as e: + logger.error( + f"[{self.workspace}] Error retrieving vectors by IDs from {self.namespace}: {e}" + ) + return {} + async def drop(self) -> dict[str, str]: """Drop the storage by removing all documents in the collection and recreating vector index. diff --git a/lightrag/kg/nano_vector_db_impl.py b/lightrag/kg/nano_vector_db_impl.py index b5ce2aa3..5bec06f4 100644 --- a/lightrag/kg/nano_vector_db_impl.py +++ b/lightrag/kg/nano_vector_db_impl.py @@ -1,5 +1,7 @@ import asyncio +import base64 import os +import zlib from typing import Any, final from dataclasses import dataclass import numpy as np @@ -93,8 +95,7 @@ class NanoVectorDBStorage(BaseVectorStorage): 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption """ - - logger.debug(f"[{self.workspace}] Inserting {len(data)} to {self.namespace}") + # logger.debug(f"[{self.workspace}] Inserting {len(data)} to {self.namespace}") if not data: return @@ -120,6 +121,11 @@ class NanoVectorDBStorage(BaseVectorStorage): embeddings = np.concatenate(embeddings_list) if len(embeddings) == len(list_data): for i, d in enumerate(list_data): + # Compress vector using Float16 + zlib + Base64 for storage optimization + vector_f16 = embeddings[i].astype(np.float16) + compressed_vector = zlib.compress(vector_f16.tobytes()) + encoded_vector = base64.b64encode(compressed_vector).decode("utf-8") + d["vector"] = encoded_vector d["__vector__"] = embeddings[i] client = await self._get_client() results = client.upsert(datas=list_data) @@ -147,7 +153,7 @@ class NanoVectorDBStorage(BaseVectorStorage): ) results = [ { - **dp, + **{k: v for k, v in dp.items() if k != "vector"}, "id": dp["__id__"], "distance": dp["__metrics__"], "created_at": dp.get("__created_at__"), @@ -296,7 +302,7 @@ class NanoVectorDBStorage(BaseVectorStorage): if result: dp = result[0] return { - **dp, + **{k: v for k, v in dp.items() if k != "vector"}, "id": dp.get("__id__"), "created_at": dp.get("__created_at__"), } @@ -318,13 +324,41 @@ class NanoVectorDBStorage(BaseVectorStorage): results = client.get(ids) return [ { - **dp, + **{k: v for k, v in dp.items() if k != "vector"}, "id": dp.get("__id__"), "created_at": dp.get("__created_at__"), } for dp in results ] + async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]: + """Get vectors by their IDs, returning only ID and vector data for efficiency + + Args: + ids: List of unique identifiers + + Returns: + Dictionary mapping IDs to their vector embeddings + Format: {id: [vector_values], ...} + """ + if not ids: + return {} + + client = await self._get_client() + results = client.get(ids) + + vectors_dict = {} + for result in results: + if result and "vector" in result and "__id__" in result: + # Decompress vector data (Base64 + zlib + Float16 compressed) + decoded = base64.b64decode(result["vector"]) + decompressed = zlib.decompress(decoded) + vector_f16 = np.frombuffer(decompressed, dtype=np.float16) + vector_f32 = vector_f16.astype(np.float32).tolist() + vectors_dict[result["__id__"]] = vector_f32 + + return vectors_dict + async def drop(self) -> dict[str, str]: """Drop all vector data from storage and clean up resources diff --git a/lightrag/kg/neo4j_impl.py b/lightrag/kg/neo4j_impl.py index febd07e5..2a32307a 100644 --- a/lightrag/kg/neo4j_impl.py +++ b/lightrag/kg/neo4j_impl.py @@ -155,7 +155,7 @@ class Neo4JStorage(BaseGraphStorage): except neo4jExceptions.ServiceUnavailable as e: logger.error( f"[{self.workspace}] " - + f"{database} at {URI} is not available".capitalize() + + f"Database {database} at {URI} is not available" ) raise e except neo4jExceptions.AuthError as e: @@ -167,7 +167,7 @@ class Neo4JStorage(BaseGraphStorage): if e.code == "Neo.ClientError.Database.DatabaseNotFound": logger.info( f"[{self.workspace}] " - + f"{database} at {URI} not found. Try to create specified database.".capitalize() + + f"Database {database} at {URI} not found. Try to create specified database." ) try: async with self._driver.session() as session: @@ -177,7 +177,7 @@ class Neo4JStorage(BaseGraphStorage): await result.consume() # Ensure result is consumed logger.info( f"[{self.workspace}] " - + f"{database} at {URI} created".capitalize() + + f"Database {database} at {URI} created" ) connected = True except ( diff --git a/lightrag/kg/postgres_impl.py b/lightrag/kg/postgres_impl.py index 88292db5..e50128c9 100644 --- a/lightrag/kg/postgres_impl.py +++ b/lightrag/kg/postgres_impl.py @@ -2158,6 +2158,53 @@ class PGVectorStorage(BaseVectorStorage): ) return [] + async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]: + """Get vectors by their IDs, returning only ID and vector data for efficiency + + Args: + ids: List of unique identifiers + + Returns: + Dictionary mapping IDs to their vector embeddings + Format: {id: [vector_values], ...} + """ + if not ids: + return {} + + table_name = namespace_to_table_name(self.namespace) + if not table_name: + logger.error( + f"[{self.workspace}] Unknown namespace for vector lookup: {self.namespace}" + ) + return {} + + ids_str = ",".join([f"'{id}'" for id in ids]) + query = f"SELECT id, content_vector FROM {table_name} WHERE workspace=$1 AND id IN ({ids_str})" + params = {"workspace": self.workspace} + + try: + results = await self.db.query(query, params, multirows=True) + vectors_dict = {} + + for result in results: + if result and "content_vector" in result and "id" in result: + try: + # Parse JSON string to get vector as list of floats + vector_data = json.loads(result["content_vector"]) + if isinstance(vector_data, list): + vectors_dict[result["id"]] = vector_data + except (json.JSONDecodeError, TypeError) as e: + logger.warning( + f"[{self.workspace}] Failed to parse vector data for ID {result['id']}: {e}" + ) + + return vectors_dict + except Exception as e: + logger.error( + f"[{self.workspace}] Error retrieving vectors by IDs from {self.namespace}: {e}" + ) + return {} + async def drop(self) -> dict[str, str]: """Drop the storage""" async with get_storage_lock(): diff --git a/lightrag/kg/qdrant_impl.py b/lightrag/kg/qdrant_impl.py index 1686cba6..4ece163c 100644 --- a/lightrag/kg/qdrant_impl.py +++ b/lightrag/kg/qdrant_impl.py @@ -402,6 +402,50 @@ class QdrantVectorDBStorage(BaseVectorStorage): ) return [] + async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]: + """Get vectors by their IDs, returning only ID and vector data for efficiency + + Args: + ids: List of unique identifiers + + Returns: + Dictionary mapping IDs to their vector embeddings + Format: {id: [vector_values], ...} + """ + if not ids: + return {} + + try: + # Convert to Qdrant compatible IDs + qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids] + + # Retrieve the points by IDs with vectors + results = self._client.retrieve( + collection_name=self.final_namespace, + ids=qdrant_ids, + with_vectors=True, # Important: request vectors + with_payload=True, + ) + + vectors_dict = {} + for point in results: + if point and point.vector is not None and point.payload: + # Get original ID from payload + original_id = point.payload.get("id") + if original_id: + # Convert numpy array to list if needed + vector_data = point.vector + if isinstance(vector_data, np.ndarray): + vector_data = vector_data.tolist() + vectors_dict[original_id] = vector_data + + return vectors_dict + except Exception as e: + logger.error( + f"[{self.workspace}] Error retrieving vectors by IDs from {self.namespace}: {e}" + ) + return {} + async def drop(self) -> dict[str, str]: """Drop all vector data from storage and clean up resources diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py index 942cc55a..cf2aaf19 100644 --- a/lightrag/lightrag.py +++ b/lightrag/lightrag.py @@ -31,6 +31,7 @@ from lightrag.constants import ( DEFAULT_MAX_TOTAL_TOKENS, DEFAULT_COSINE_THRESHOLD, DEFAULT_RELATED_CHUNK_NUMBER, + DEFAULT_KG_CHUNK_PICK_METHOD, DEFAULT_MIN_RERANK_SCORE, DEFAULT_SUMMARY_MAX_TOKENS, DEFAULT_MAX_ASYNC, @@ -175,6 +176,11 @@ class LightRAG: ) """Number of related chunks to grab from single entity or relation.""" + kg_chunk_pick_method: str = field( + default=get_env_value("KG_CHUNK_PICK_METHOD", DEFAULT_KG_CHUNK_PICK_METHOD, str) + ) + """Method for selecting text chunks: 'WEIGHT' for weight-based selection, 'VECTOR' for embedding similarity-based selection.""" + # Entity extraction # --- diff --git a/lightrag/operate.py b/lightrag/operate.py index 7fb150f7..acb75f0f 100644 --- a/lightrag/operate.py +++ b/lightrag/operate.py @@ -27,7 +27,8 @@ from .utils import ( use_llm_func_with_cache, update_chunk_cache_list, remove_think_tags, - linear_gradient_weighted_polling, + pick_by_weighted_polling, + pick_by_vector_similarity, process_chunks_unified, build_file_path, ) @@ -45,6 +46,7 @@ from .constants import ( DEFAULT_MAX_RELATION_TOKENS, DEFAULT_MAX_TOTAL_TOKENS, DEFAULT_RELATED_CHUNK_NUMBER, + DEFAULT_KG_CHUNK_PICK_METHOD, ) from .kg.shared_storage import get_storage_keyed_lock import time @@ -2105,6 +2107,9 @@ async def _build_query_context( global_entities = [] global_relations = [] + # Track chunk sources and metadata for final logging + chunk_tracking = {} # chunk_id -> {source, frequency, order} + # Handle local and global modes if query_param.mode == "local": local_entities, local_relations = await _get_node_data( @@ -2143,6 +2148,15 @@ async def _build_query_context( chunks_vdb, query_param, ) + # Track vector chunks with source metadata + for i, chunk in enumerate(vector_chunks): + chunk_id = chunk.get("chunk_id") or chunk.get("id") + if chunk_id: + chunk_tracking[chunk_id] = { + "source": "C", + "frequency": 1, # Vector chunks always have frequency 1 + "order": i + 1, # 1-based order in vector search results + } # Use round-robin merge to combine local and global data fairly final_entities = [] @@ -2340,20 +2354,29 @@ async def _build_query_context( seen_edges.add(pair) # Get text chunks based on final filtered data + # To preserve the influence of entity order, entiy-based chunks should not be deduplcicated by vector_chunks if final_node_datas: - entity_chunks = await _find_most_related_text_unit_from_entities( + entity_chunks = await _find_related_text_unit_from_entities( final_node_datas, query_param, text_chunks_db, knowledge_graph_inst, + query, + chunks_vdb, + chunk_tracking=chunk_tracking, ) + # Find deduplcicated chunks from edge + # Deduplication cause chunks solely relation-based to be prioritized and sent to the LLM when re-ranking is disabled if final_edge_datas: - relation_chunks = await _find_related_text_unit_from_relationships( + relation_chunks = await _find_related_text_unit_from_relations( final_edge_datas, query_param, text_chunks_db, entity_chunks, + query, + chunks_vdb, + chunk_tracking=chunk_tracking, ) # Round-robin merge chunks from different sources with deduplication by chunk_id @@ -2373,6 +2396,7 @@ async def _build_query_context( { "content": chunk["content"], "file_path": chunk.get("file_path", "unknown_source"), + "chunk_id": chunk_id, } ) @@ -2386,6 +2410,7 @@ async def _build_query_context( { "content": chunk["content"], "file_path": chunk.get("file_path", "unknown_source"), + "chunk_id": chunk_id, } ) @@ -2399,10 +2424,11 @@ async def _build_query_context( { "content": chunk["content"], "file_path": chunk.get("file_path", "unknown_source"), + "chunk_id": chunk_id, } ) - logger.debug( + logger.info( f"Round-robin merged total chunks from {origin_len} to {len(merged_chunks)}" ) @@ -2517,6 +2543,24 @@ async def _build_query_context( if not entities_context and not relations_context: return None + # output chunks tracking infomations + # format: / (e.g., E5/2 R2/1 C1/1) + if truncated_chunks and chunk_tracking: + chunk_tracking_log = [] + for chunk in truncated_chunks: + chunk_id = chunk.get("chunk_id") + if chunk_id and chunk_id in chunk_tracking: + tracking_info = chunk_tracking[chunk_id] + source = tracking_info["source"] + frequency = tracking_info["frequency"] + order = tracking_info["order"] + chunk_tracking_log.append(f"{source}{frequency}/{order}") + else: + chunk_tracking_log.append("?0/0") + + if chunk_tracking_log: + logger.info(f"chunks: {' '.join(chunk_tracking_log)}") + entities_str = json.dumps(entities_context, ensure_ascii=False) relations_str = json.dumps(relations_context, ensure_ascii=False) text_units_str = json.dumps(text_units_context, ensure_ascii=False) @@ -2603,104 +2647,6 @@ async def _get_node_data( return node_datas, use_relations -async def _find_most_related_text_unit_from_entities( - node_datas: list[dict], - query_param: QueryParam, - text_chunks_db: BaseKVStorage, - knowledge_graph_inst: BaseGraphStorage, -): - """ - Find text chunks related to entities using linear gradient weighted polling algorithm. - - This function implements the optimized text chunk selection strategy: - 1. Sort text chunks for each entity by occurrence count in other entities - 2. Use linear gradient weighted polling to select chunks fairly - """ - logger.debug(f"Searching text chunks for {len(node_datas)} entities") - - if not node_datas: - return [] - - # Step 1: Collect all text chunks for each entity - entities_with_chunks = [] - for entity in node_datas: - if entity.get("source_id"): - chunks = split_string_by_multi_markers( - entity["source_id"], [GRAPH_FIELD_SEP] - ) - if chunks: - entities_with_chunks.append( - { - "entity_name": entity["entity_name"], - "chunks": chunks, - "entity_data": entity, - } - ) - - if not entities_with_chunks: - logger.warning("No entities with text chunks found") - return [] - - # Step 2: Count chunk occurrences and deduplicate (keep chunks from earlier positioned entities) - chunk_occurrence_count = {} - for entity_info in entities_with_chunks: - deduplicated_chunks = [] - for chunk_id in entity_info["chunks"]: - chunk_occurrence_count[chunk_id] = ( - chunk_occurrence_count.get(chunk_id, 0) + 1 - ) - - # If this is the first occurrence (count == 1), keep it; otherwise skip (duplicate from later position) - if chunk_occurrence_count[chunk_id] == 1: - deduplicated_chunks.append(chunk_id) - # count > 1 means this chunk appeared in an earlier entity, so skip it - - # Update entity's chunks to deduplicated chunks - entity_info["chunks"] = deduplicated_chunks - - # Step 3: Sort chunks for each entity by occurrence count (higher count = higher priority) - for entity_info in entities_with_chunks: - sorted_chunks = sorted( - entity_info["chunks"], - key=lambda chunk_id: chunk_occurrence_count.get(chunk_id, 0), - reverse=True, - ) - entity_info["sorted_chunks"] = sorted_chunks - - # Step 4: Apply linear gradient weighted polling algorithm - max_related_chunks = text_chunks_db.global_config.get( - "related_chunk_number", DEFAULT_RELATED_CHUNK_NUMBER - ) - - selected_chunk_ids = linear_gradient_weighted_polling( - entities_with_chunks, max_related_chunks, min_related_chunks=1 - ) - - logger.debug( - f"Found {len(selected_chunk_ids)} entity-related chunks using linear gradient weighted polling" - ) - - if not selected_chunk_ids: - return [] - - # Step 5: Batch retrieve chunk data - unique_chunk_ids = list( - dict.fromkeys(selected_chunk_ids) - ) # Remove duplicates while preserving order - chunk_data_list = await text_chunks_db.get_by_ids(unique_chunk_ids) - - # Step 6: Build result chunks with valid data - result_chunks = [] - for chunk_id, chunk_data in zip(unique_chunk_ids, chunk_data_list): - if chunk_data is not None and "content" in chunk_data: - chunk_data_copy = chunk_data.copy() - chunk_data_copy["source_type"] = "entity" - chunk_data_copy["chunk_id"] = chunk_id # Add chunk_id for deduplication - result_chunks.append(chunk_data_copy) - - return result_chunks - - async def _find_most_related_edges_from_entities( node_datas: list[dict], query_param: QueryParam, @@ -2757,6 +2703,167 @@ async def _find_most_related_edges_from_entities( return all_edges_data +async def _find_related_text_unit_from_entities( + node_datas: list[dict], + query_param: QueryParam, + text_chunks_db: BaseKVStorage, + knowledge_graph_inst: BaseGraphStorage, + query: str = None, + chunks_vdb: BaseVectorStorage = None, + chunk_tracking: dict = None, +): + """ + Find text chunks related to entities using configurable chunk selection method. + + This function supports two chunk selection strategies: + 1. WEIGHT: Linear gradient weighted polling based on chunk occurrence count + 2. VECTOR: Vector similarity-based selection using embedding cosine similarity + """ + logger.debug(f"Finding text chunks from {len(node_datas)} entities") + + if not node_datas: + return [] + + # Step 1: Collect all text chunks for each entity + entities_with_chunks = [] + for entity in node_datas: + if entity.get("source_id"): + chunks = split_string_by_multi_markers( + entity["source_id"], [GRAPH_FIELD_SEP] + ) + if chunks: + entities_with_chunks.append( + { + "entity_name": entity["entity_name"], + "chunks": chunks, + "entity_data": entity, + } + ) + + if not entities_with_chunks: + logger.warning("No entities with text chunks found") + return [] + + kg_chunk_pick_method = text_chunks_db.global_config.get( + "kg_chunk_pick_method", DEFAULT_KG_CHUNK_PICK_METHOD + ) + max_related_chunks = text_chunks_db.global_config.get( + "related_chunk_number", DEFAULT_RELATED_CHUNK_NUMBER + ) + + # Step 2: Count chunk occurrences and deduplicate (keep chunks from earlier positioned entities) + chunk_occurrence_count = {} + for entity_info in entities_with_chunks: + deduplicated_chunks = [] + for chunk_id in entity_info["chunks"]: + chunk_occurrence_count[chunk_id] = ( + chunk_occurrence_count.get(chunk_id, 0) + 1 + ) + + # If this is the first occurrence (count == 1), keep it; otherwise skip (duplicate from later position) + if chunk_occurrence_count[chunk_id] == 1: + deduplicated_chunks.append(chunk_id) + # count > 1 means this chunk appeared in an earlier entity, so skip it + + # Update entity's chunks to deduplicated chunks + entity_info["chunks"] = deduplicated_chunks + + # Step 3: Sort chunks for each entity by occurrence count (higher count = higher priority) + total_entity_chunks = 0 + for entity_info in entities_with_chunks: + sorted_chunks = sorted( + entity_info["chunks"], + key=lambda chunk_id: chunk_occurrence_count.get(chunk_id, 0), + reverse=True, + ) + entity_info["sorted_chunks"] = sorted_chunks + total_entity_chunks += len(sorted_chunks) + + selected_chunk_ids = [] # Initialize to avoid UnboundLocalError + + # Step 4: Apply the selected chunk selection algorithm + # Pick by vector similarity: + # The order of text chunks aligns with the naive retrieval's destination. + # When reranking is disabled, the text chunks delivered to the LLM tend to favor naive retrieval. + if kg_chunk_pick_method == "VECTOR" and query and chunks_vdb: + num_of_chunks = int(max_related_chunks * len(entities_with_chunks) / 2) + + # Get embedding function from global config + embedding_func_config = text_chunks_db.embedding_func + if not embedding_func_config: + logger.warning("No embedding function found, falling back to WEIGHT method") + kg_chunk_pick_method = "WEIGHT" + else: + try: + actual_embedding_func = embedding_func_config.func + + selected_chunk_ids = None + if actual_embedding_func: + selected_chunk_ids = await pick_by_vector_similarity( + query=query, + text_chunks_storage=text_chunks_db, + chunks_vdb=chunks_vdb, + num_of_chunks=num_of_chunks, + entity_info=entities_with_chunks, + embedding_func=actual_embedding_func, + ) + + if selected_chunk_ids == []: + kg_chunk_pick_method = "WEIGHT" + logger.warning( + "No entity-related chunks selected by vector similarity, falling back to WEIGHT method" + ) + else: + logger.info( + f"Selecting {len(selected_chunk_ids)} from {total_entity_chunks} entity-related chunks by vector similarity" + ) + + except Exception as e: + logger.error( + f"Error in vector similarity sorting: {e}, falling back to WEIGHT method" + ) + kg_chunk_pick_method = "WEIGHT" + + if kg_chunk_pick_method == "WEIGHT": + # Pick by entity and chunk weight: + # When reranking is disabled, delivered more solely KG related chunks to the LLM + selected_chunk_ids = pick_by_weighted_polling( + entities_with_chunks, max_related_chunks, min_related_chunks=1 + ) + + logger.info( + f"Selecting {len(selected_chunk_ids)} from {total_entity_chunks} entity-related chunks by weighted polling" + ) + + if not selected_chunk_ids: + return [] + + # Step 5: Batch retrieve chunk data + unique_chunk_ids = list( + dict.fromkeys(selected_chunk_ids) + ) # Remove duplicates while preserving order + chunk_data_list = await text_chunks_db.get_by_ids(unique_chunk_ids) + + # Step 6: Build result chunks with valid data and update chunk tracking + result_chunks = [] + for i, (chunk_id, chunk_data) in enumerate(zip(unique_chunk_ids, chunk_data_list)): + if chunk_data is not None and "content" in chunk_data: + chunk_data_copy = chunk_data.copy() + chunk_data_copy["source_type"] = "entity" + chunk_data_copy["chunk_id"] = chunk_id # Add chunk_id for deduplication + result_chunks.append(chunk_data_copy) + + # Update chunk tracking if provided + if chunk_tracking is not None: + chunk_tracking[chunk_id] = { + "source": "E", + "frequency": chunk_occurrence_count.get(chunk_id, 1), + "order": i + 1, # 1-based order in final entity-related results + } + + return result_chunks + + async def _get_edge_data( keywords, knowledge_graph_inst: BaseGraphStorage, @@ -2848,20 +2955,23 @@ async def _find_most_related_entities_from_relationships( return node_datas -async def _find_related_text_unit_from_relationships( +async def _find_related_text_unit_from_relations( edge_datas: list[dict], query_param: QueryParam, text_chunks_db: BaseKVStorage, entity_chunks: list[dict] = None, + query: str = None, + chunks_vdb: BaseVectorStorage = None, + chunk_tracking: dict = None, ): """ - Find text chunks related to relationships using linear gradient weighted polling algorithm. + Find text chunks related to relationships using configurable chunk selection method. - This function implements the optimized text chunk selection strategy: - 1. Sort text chunks for each relationship by occurrence count in other relationships - 2. Use linear gradient weighted polling to select chunks fairly + This function supports two chunk selection strategies: + 1. WEIGHT: Linear gradient weighted polling based on chunk occurrence count + 2. VECTOR: Vector similarity-based selection using embedding cosine similarity """ - logger.debug(f"Searching text chunks for {len(edge_datas)} relationships") + logger.debug(f"Finding text chunks from {len(edge_datas)} relations") if not edge_datas: return [] @@ -2891,14 +3001,40 @@ async def _find_related_text_unit_from_relationships( ) if not relations_with_chunks: - logger.warning("No relationships with text chunks found") + logger.warning("No relation-related chunks found") return [] + kg_chunk_pick_method = text_chunks_db.global_config.get( + "kg_chunk_pick_method", DEFAULT_KG_CHUNK_PICK_METHOD + ) + max_related_chunks = text_chunks_db.global_config.get( + "related_chunk_number", DEFAULT_RELATED_CHUNK_NUMBER + ) + # Step 2: Count chunk occurrences and deduplicate (keep chunks from earlier positioned relationships) + # Also remove duplicates with entity_chunks + + # Extract chunk IDs from entity_chunks for deduplication + entity_chunk_ids = set() + if entity_chunks: + for chunk in entity_chunks: + chunk_id = chunk.get("chunk_id") + if chunk_id: + entity_chunk_ids.add(chunk_id) + chunk_occurrence_count = {} + # Track unique chunk_ids that have been removed to avoid double counting + removed_entity_chunk_ids = set() + for relation_info in relations_with_chunks: deduplicated_chunks = [] for chunk_id in relation_info["chunks"]: + # Skip chunks that already exist in entity_chunks + if chunk_id in entity_chunk_ids: + # Only count each unique chunk_id once + removed_entity_chunk_ids.add(chunk_id) + continue + chunk_occurrence_count[chunk_id] = ( chunk_occurrence_count.get(chunk_id, 0) + 1 ) @@ -2911,7 +3047,21 @@ async def _find_related_text_unit_from_relationships( # Update relationship's chunks to deduplicated chunks relation_info["chunks"] = deduplicated_chunks + # Check if any relations still have chunks after deduplication + relations_with_chunks = [ + relation_info + for relation_info in relations_with_chunks + if relation_info["chunks"] + ] + + if not relations_with_chunks: + logger.info( + f"Find no additional relations-related chunks from {len(edge_datas)} relations" + ) + return [] + # Step 3: Sort chunks for each relationship by occurrence count (higher count = higher priority) + total_relation_chunks = 0 for relation_info in relations_with_chunks: sorted_chunks = sorted( relation_info["chunks"], @@ -2919,66 +3069,93 @@ async def _find_related_text_unit_from_relationships( reverse=True, ) relation_info["sorted_chunks"] = sorted_chunks + total_relation_chunks += len(sorted_chunks) - # Step 4: Apply linear gradient weighted polling algorithm - max_related_chunks = text_chunks_db.global_config.get( - "related_chunk_number", DEFAULT_RELATED_CHUNK_NUMBER + logger.info( + f"Find {total_relation_chunks} additional chunks in {len(relations_with_chunks)} relations ({len(removed_entity_chunk_ids)} duplicated chunks removed)" ) - selected_chunk_ids = linear_gradient_weighted_polling( - relations_with_chunks, max_related_chunks, min_related_chunks=1 - ) + # Step 4: Apply the selected chunk selection algorithm + selected_chunk_ids = [] # Initialize to avoid UnboundLocalError + + if kg_chunk_pick_method == "VECTOR" and query and chunks_vdb: + num_of_chunks = int(max_related_chunks * len(relations_with_chunks) / 2) + + # Get embedding function from global config + embedding_func_config = text_chunks_db.embedding_func + if not embedding_func_config: + logger.warning("No embedding function found, falling back to WEIGHT method") + kg_chunk_pick_method = "WEIGHT" + else: + try: + actual_embedding_func = embedding_func_config.func + + if actual_embedding_func: + selected_chunk_ids = await pick_by_vector_similarity( + query=query, + text_chunks_storage=text_chunks_db, + chunks_vdb=chunks_vdb, + num_of_chunks=num_of_chunks, + entity_info=relations_with_chunks, + embedding_func=actual_embedding_func, + ) + + if selected_chunk_ids == []: + kg_chunk_pick_method = "WEIGHT" + logger.warning( + "No relation-related chunks selected by vector similarity, falling back to WEIGHT method" + ) + else: + logger.info( + f"Selecting {len(selected_chunk_ids)} from {total_relation_chunks} relation-related chunks by vector similarity" + ) + + except Exception as e: + logger.error( + f"Error in vector similarity sorting: {e}, falling back to WEIGHT method" + ) + kg_chunk_pick_method = "WEIGHT" + + if kg_chunk_pick_method == "WEIGHT": + # Apply linear gradient weighted polling algorithm + selected_chunk_ids = pick_by_weighted_polling( + relations_with_chunks, max_related_chunks, min_related_chunks=1 + ) + + logger.info( + f"Selecting {len(selected_chunk_ids)} from {total_relation_chunks} relation-related chunks by weighted polling" + ) logger.debug( - f"Found {len(selected_chunk_ids)} relationship-related chunks using linear gradient weighted polling" - ) - logger.info( f"KG related chunks: {len(entity_chunks)} from entitys, {len(selected_chunk_ids)} from relations" ) if not selected_chunk_ids: return [] - # Step 4.5: Remove duplicates with entity_chunks before batch retrieval - if entity_chunks: - # Extract chunk IDs from entity_chunks - entity_chunk_ids = set() - for chunk in entity_chunks: - chunk_id = chunk.get("chunk_id") - if chunk_id: - entity_chunk_ids.add(chunk_id) - - # Filter out duplicate chunk IDs - original_count = len(selected_chunk_ids) - selected_chunk_ids = [ - chunk_id - for chunk_id in selected_chunk_ids - if chunk_id not in entity_chunk_ids - ] - - logger.debug( - f"Deduplication relation-chunks with entity-chunks: {original_count} -> {len(selected_chunk_ids)} chunks " - ) - - # Early return if no chunks remain after deduplication - if not selected_chunk_ids: - return [] - # Step 5: Batch retrieve chunk data unique_chunk_ids = list( dict.fromkeys(selected_chunk_ids) ) # Remove duplicates while preserving order chunk_data_list = await text_chunks_db.get_by_ids(unique_chunk_ids) - # Step 6: Build result chunks with valid data + # Step 6: Build result chunks with valid data and update chunk tracking result_chunks = [] - for chunk_id, chunk_data in zip(unique_chunk_ids, chunk_data_list): + for i, (chunk_id, chunk_data) in enumerate(zip(unique_chunk_ids, chunk_data_list)): if chunk_data is not None and "content" in chunk_data: chunk_data_copy = chunk_data.copy() chunk_data_copy["source_type"] = "relationship" chunk_data_copy["chunk_id"] = chunk_id # Add chunk_id for deduplication result_chunks.append(chunk_data_copy) + # Update chunk tracking if provided + if chunk_tracking is not None: + chunk_tracking[chunk_id] = { + "source": "R", + "frequency": chunk_occurrence_count.get(chunk_id, 1), + "order": i + 1, # 1-based order in final relation-related results + } + return result_chunks diff --git a/lightrag/utils.py b/lightrag/utils.py index bea9962a..340e4251 100644 --- a/lightrag/utils.py +++ b/lightrag/utils.py @@ -60,7 +60,7 @@ def get_env_value( # Use TYPE_CHECKING to avoid circular imports if TYPE_CHECKING: - from lightrag.base import BaseKVStorage, QueryParam + from lightrag.base import BaseKVStorage, BaseVectorStorage, QueryParam # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance @@ -1570,7 +1570,7 @@ def check_storage_env_vars(storage_name: str) -> None: ) -def linear_gradient_weighted_polling( +def pick_by_weighted_polling( entities_or_relations: list[dict], max_related_chunks: int, min_related_chunks: int = 1, @@ -1650,6 +1650,120 @@ def linear_gradient_weighted_polling( return selected_chunks +async def pick_by_vector_similarity( + query: str, + text_chunks_storage: "BaseKVStorage", + chunks_vdb: "BaseVectorStorage", + num_of_chunks: int, + entity_info: list[dict[str, Any]], + embedding_func: callable, +) -> list[str]: + """ + Vector similarity-based text chunk selection algorithm. + + This algorithm selects text chunks based on cosine similarity between + the query embedding and text chunk embeddings. + + Args: + query: User's original query string + text_chunks_storage: Text chunks storage instance + chunks_vdb: Vector database storage for chunks + num_of_chunks: Number of chunks to select + entity_info: List of entity information containing chunk IDs + embedding_func: Embedding function to compute query embedding + + Returns: + List of selected text chunk IDs sorted by similarity (highest first) + """ + logger.debug( + f"Vector similarity chunk selection: num_of_chunks={num_of_chunks}, entity_info_count={len(entity_info) if entity_info else 0}" + ) + + if not entity_info or num_of_chunks <= 0: + return [] + + # Collect all unique chunk IDs from entity info + all_chunk_ids = set() + for i, entity in enumerate(entity_info): + chunk_ids = entity.get("sorted_chunks", []) + all_chunk_ids.update(chunk_ids) + + if not all_chunk_ids: + logger.warning( + "Vector similarity chunk selection: no chunk IDs found in entity_info" + ) + return [] + + logger.debug( + f"Vector similarity chunk selection: {len(all_chunk_ids)} unique chunk IDs collected" + ) + + all_chunk_ids = list(all_chunk_ids) + + try: + # Get query embedding + query_embedding = await embedding_func([query]) + query_embedding = query_embedding[ + 0 + ] # Extract first embedding from batch result + + # Get chunk embeddings from vector database + chunk_vectors = await chunks_vdb.get_vectors_by_ids(all_chunk_ids) + logger.debug( + f"Vector similarity chunk selection: {len(chunk_vectors)} chunk vectors Retrieved" + ) + + if not chunk_vectors or len(chunk_vectors) != len(all_chunk_ids): + if not chunk_vectors: + logger.warning( + "Vector similarity chunk selection: no vectors retrieved from chunks_vdb" + ) + else: + logger.warning( + f"Vector similarity chunk selection: found {len(chunk_vectors)} but expecting {len(all_chunk_ids)}" + ) + return [] + + # Calculate cosine similarities + similarities = [] + valid_vectors = 0 + for chunk_id in all_chunk_ids: + if chunk_id in chunk_vectors: + chunk_embedding = chunk_vectors[chunk_id] + try: + # Calculate cosine similarity + similarity = cosine_similarity(query_embedding, chunk_embedding) + similarities.append((chunk_id, similarity)) + valid_vectors += 1 + except Exception as e: + logger.warning( + f"Vector similarity chunk selection: failed to calculate similarity for chunk {chunk_id}: {e}" + ) + else: + logger.warning( + f"Vector similarity chunk selection: no vector found for chunk {chunk_id}" + ) + + # Sort by similarity (highest first) and select top num_of_chunks + similarities.sort(key=lambda x: x[1], reverse=True) + selected_chunks = [chunk_id for chunk_id, _ in similarities[:num_of_chunks]] + + logger.debug( + f"Vector similarity chunk selection: {len(selected_chunks)} chunks from {len(all_chunk_ids)} candidates" + ) + + return selected_chunks + + except Exception as e: + logger.error(f"[VECTOR_SIMILARITY] Error in vector similarity sorting: {e}") + import traceback + + logger.error(f"[VECTOR_SIMILARITY] Traceback: {traceback.format_exc()}") + # Fallback to simple truncation + logger.debug("[VECTOR_SIMILARITY] Falling back to simple truncation") + return all_chunk_ids[:num_of_chunks] + + class TokenTracker: """Track token usage for LLM calls.""" @@ -1787,6 +1901,13 @@ async def process_chunks_unified( # 1. Apply reranking if enabled and query is provided if query_param.enable_rerank and query and unique_chunks: + # 保存 chunk_id 字段,因为 rerank 可能会丢失这个字段 + chunk_ids = {} + for chunk in unique_chunks: + chunk_id = chunk.get("chunk_id") + if chunk_id: + chunk_ids[id(chunk)] = chunk_id + rerank_top_k = query_param.chunk_top_k or len(unique_chunks) unique_chunks = await apply_rerank_if_enabled( query=query, @@ -1796,6 +1917,11 @@ async def process_chunks_unified( top_n=rerank_top_k, ) + # 恢复 chunk_id 字段 + for chunk in unique_chunks: + if id(chunk) in chunk_ids: + chunk["chunk_id"] = chunk_ids[id(chunk)] + # 2. Filter by minimum rerank score if reranking is enabled if query_param.enable_rerank and unique_chunks: min_rerank_score = global_config.get("min_rerank_score", 0.5) @@ -1842,12 +1968,26 @@ async def process_chunks_unified( ) original_count = len(unique_chunks) + + # Keep chunk_id field, cause truncate_list_by_token_size will lose it + chunk_ids_map = {} + for i, chunk in enumerate(unique_chunks): + chunk_id = chunk.get("chunk_id") + if chunk_id: + chunk_ids_map[i] = chunk_id + unique_chunks = truncate_list_by_token_size( unique_chunks, key=lambda x: x.get("content", ""), max_token_size=chunk_token_limit, tokenizer=tokenizer, ) + + # restore chunk_id feiled + for i, chunk in enumerate(unique_chunks): + if i in chunk_ids_map: + chunk["chunk_id"] = chunk_ids_map[i] + logger.debug( f"Token truncation: {len(unique_chunks)} chunks from {original_count} " f"(chunk available tokens: {chunk_token_limit}, source: {source_type})"