Consolidate Azure OpenAI implementation into main OpenAI module
• Unified OpenAI/Azure client creation • Azure module now re-exports functions • Backward compatibility maintained • Reduced code duplication
This commit is contained in:
parent
66d6c7dd6f
commit
b709f8f869
2 changed files with 213 additions and 215 deletions
|
|
@ -1,193 +1,22 @@
|
||||||
from collections.abc import Iterable
|
"""
|
||||||
import os
|
Azure OpenAI compatibility layer.
|
||||||
import pipmaster as pm # Pipmaster for dynamic library install
|
|
||||||
|
|
||||||
# install specific modules
|
This module provides backward compatibility by re-exporting Azure OpenAI functions
|
||||||
if not pm.is_installed("openai"):
|
from the main openai module where the actual implementation resides.
|
||||||
pm.install("openai")
|
|
||||||
|
|
||||||
from openai import (
|
All core logic for both OpenAI and Azure OpenAI now lives in lightrag.llm.openai,
|
||||||
AsyncAzureOpenAI,
|
with this module serving as a thin compatibility wrapper for existing code that
|
||||||
APIConnectionError,
|
imports from lightrag.llm.azure_openai.
|
||||||
RateLimitError,
|
"""
|
||||||
APITimeoutError,
|
|
||||||
)
|
|
||||||
from openai.types.chat import ChatCompletionMessageParam
|
|
||||||
|
|
||||||
from tenacity import (
|
from lightrag.llm.openai import (
|
||||||
retry,
|
azure_openai_complete_if_cache,
|
||||||
stop_after_attempt,
|
azure_openai_complete,
|
||||||
wait_exponential,
|
azure_openai_embed,
|
||||||
retry_if_exception_type,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
from lightrag.utils import (
|
__all__ = [
|
||||||
wrap_embedding_func_with_attrs,
|
"azure_openai_complete_if_cache",
|
||||||
safe_unicode_decode,
|
"azure_openai_complete",
|
||||||
logger,
|
"azure_openai_embed",
|
||||||
)
|
]
|
||||||
from lightrag.types import GPTKeywordExtractionFormat
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
@retry(
|
|
||||||
stop=stop_after_attempt(3),
|
|
||||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
||||||
retry=retry_if_exception_type(
|
|
||||||
(RateLimitError, APIConnectionError, APIConnectionError)
|
|
||||||
),
|
|
||||||
)
|
|
||||||
async def azure_openai_complete_if_cache(
|
|
||||||
model,
|
|
||||||
prompt,
|
|
||||||
system_prompt: str | None = None,
|
|
||||||
history_messages: Iterable[ChatCompletionMessageParam] | None = None,
|
|
||||||
enable_cot: bool = False,
|
|
||||||
base_url: str | None = None,
|
|
||||||
api_key: str | None = None,
|
|
||||||
api_version: str | None = None,
|
|
||||||
keyword_extraction: bool = False,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
if enable_cot:
|
|
||||||
logger.debug(
|
|
||||||
"enable_cot=True is not supported for the Azure OpenAI API and will be ignored."
|
|
||||||
)
|
|
||||||
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
|
||||||
base_url = (
|
|
||||||
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
|
||||||
)
|
|
||||||
api_key = (
|
|
||||||
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
|
||||||
)
|
|
||||||
api_version = (
|
|
||||||
api_version
|
|
||||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
|
||||||
or os.getenv("OPENAI_API_VERSION")
|
|
||||||
)
|
|
||||||
|
|
||||||
kwargs.pop("hashing_kv", None)
|
|
||||||
timeout = kwargs.pop("timeout", None)
|
|
||||||
|
|
||||||
# Handle keyword extraction mode
|
|
||||||
if keyword_extraction:
|
|
||||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
|
||||||
|
|
||||||
openai_async_client = AsyncAzureOpenAI(
|
|
||||||
azure_endpoint=base_url,
|
|
||||||
azure_deployment=deployment,
|
|
||||||
api_key=api_key,
|
|
||||||
api_version=api_version,
|
|
||||||
timeout=timeout,
|
|
||||||
)
|
|
||||||
messages = []
|
|
||||||
if system_prompt:
|
|
||||||
messages.append({"role": "system", "content": system_prompt})
|
|
||||||
if history_messages:
|
|
||||||
messages.extend(history_messages)
|
|
||||||
if prompt is not None:
|
|
||||||
messages.append({"role": "user", "content": prompt})
|
|
||||||
|
|
||||||
if "response_format" in kwargs:
|
|
||||||
response = await openai_async_client.chat.completions.parse(
|
|
||||||
model=model, messages=messages, **kwargs
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
response = await openai_async_client.chat.completions.create(
|
|
||||||
model=model, messages=messages, **kwargs
|
|
||||||
)
|
|
||||||
|
|
||||||
if hasattr(response, "__aiter__"):
|
|
||||||
|
|
||||||
async def inner():
|
|
||||||
async for chunk in response:
|
|
||||||
if len(chunk.choices) == 0:
|
|
||||||
continue
|
|
||||||
content = chunk.choices[0].delta.content
|
|
||||||
if content is None:
|
|
||||||
continue
|
|
||||||
if r"\u" in content:
|
|
||||||
content = safe_unicode_decode(content.encode("utf-8"))
|
|
||||||
yield content
|
|
||||||
|
|
||||||
return inner()
|
|
||||||
else:
|
|
||||||
message = response.choices[0].message
|
|
||||||
|
|
||||||
# Handle parsed responses (structured output via response_format)
|
|
||||||
# When using beta.chat.completions.parse(), the response is in message.parsed
|
|
||||||
if hasattr(message, "parsed") and message.parsed is not None:
|
|
||||||
# Serialize the parsed structured response to JSON
|
|
||||||
content = message.parsed.model_dump_json()
|
|
||||||
logger.debug("Using parsed structured response from API")
|
|
||||||
else:
|
|
||||||
# Handle regular content responses
|
|
||||||
content = message.content
|
|
||||||
if content and r"\u" in content:
|
|
||||||
content = safe_unicode_decode(content.encode("utf-8"))
|
|
||||||
|
|
||||||
return content
|
|
||||||
|
|
||||||
|
|
||||||
async def azure_openai_complete(
|
|
||||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
||||||
) -> str:
|
|
||||||
result = await azure_openai_complete_if_cache(
|
|
||||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
|
||||||
prompt,
|
|
||||||
system_prompt=system_prompt,
|
|
||||||
history_messages=history_messages,
|
|
||||||
keyword_extraction=keyword_extraction,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
|
||||||
@retry(
|
|
||||||
stop=stop_after_attempt(3),
|
|
||||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
||||||
retry=retry_if_exception_type(
|
|
||||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
|
||||||
),
|
|
||||||
)
|
|
||||||
async def azure_openai_embed(
|
|
||||||
texts: list[str],
|
|
||||||
model: str | None = None,
|
|
||||||
base_url: str | None = None,
|
|
||||||
api_key: str | None = None,
|
|
||||||
api_version: str | None = None,
|
|
||||||
) -> np.ndarray:
|
|
||||||
deployment = (
|
|
||||||
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
|
||||||
or model
|
|
||||||
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
|
||||||
)
|
|
||||||
base_url = (
|
|
||||||
base_url
|
|
||||||
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
|
||||||
or os.getenv("EMBEDDING_BINDING_HOST")
|
|
||||||
)
|
|
||||||
api_key = (
|
|
||||||
api_key
|
|
||||||
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
|
||||||
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
|
||||||
)
|
|
||||||
api_version = (
|
|
||||||
api_version
|
|
||||||
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
|
||||||
or os.getenv("OPENAI_API_VERSION")
|
|
||||||
)
|
|
||||||
|
|
||||||
openai_async_client = AsyncAzureOpenAI(
|
|
||||||
azure_endpoint=base_url,
|
|
||||||
azure_deployment=deployment,
|
|
||||||
api_key=api_key,
|
|
||||||
api_version=api_version,
|
|
||||||
)
|
|
||||||
|
|
||||||
response = await openai_async_client.embeddings.create(
|
|
||||||
model=model or deployment, input=texts, encoding_format="float"
|
|
||||||
)
|
|
||||||
return np.array([dp.embedding for dp in response.data])
|
|
||||||
|
|
|
||||||
|
|
@ -77,46 +77,73 @@ class InvalidResponseError(Exception):
|
||||||
def create_openai_async_client(
|
def create_openai_async_client(
|
||||||
api_key: str | None = None,
|
api_key: str | None = None,
|
||||||
base_url: str | None = None,
|
base_url: str | None = None,
|
||||||
|
use_azure: bool = False,
|
||||||
|
azure_deployment: str | None = None,
|
||||||
|
api_version: str | None = None,
|
||||||
|
timeout: int | None = None,
|
||||||
client_configs: dict[str, Any] | None = None,
|
client_configs: dict[str, Any] | None = None,
|
||||||
) -> AsyncOpenAI:
|
) -> AsyncOpenAI:
|
||||||
"""Create an AsyncOpenAI client with the given configuration.
|
"""Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||||
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
|
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
|
||||||
|
use_azure: Whether to create an Azure OpenAI client. Default is False.
|
||||||
|
azure_deployment: Azure OpenAI deployment name (only used when use_azure=True).
|
||||||
|
api_version: Azure OpenAI API version (only used when use_azure=True).
|
||||||
|
timeout: Request timeout in seconds.
|
||||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||||
These will override any default configurations but will be overridden by
|
These will override any default configurations but will be overridden by
|
||||||
explicit parameters (api_key, base_url).
|
explicit parameters (api_key, base_url).
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
An AsyncOpenAI client instance.
|
An AsyncOpenAI or AsyncAzureOpenAI client instance.
|
||||||
"""
|
"""
|
||||||
if not api_key:
|
if use_azure:
|
||||||
api_key = os.environ["OPENAI_API_KEY"]
|
from openai import AsyncAzureOpenAI
|
||||||
|
|
||||||
default_headers = {
|
if not api_key:
|
||||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get(
|
||||||
"Content-Type": "application/json",
|
"LLM_BINDING_API_KEY"
|
||||||
}
|
)
|
||||||
|
|
||||||
if client_configs is None:
|
return AsyncAzureOpenAI(
|
||||||
client_configs = {}
|
azure_endpoint=base_url,
|
||||||
|
azure_deployment=azure_deployment,
|
||||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
api_key=api_key,
|
||||||
merged_configs = {
|
api_version=api_version,
|
||||||
**client_configs,
|
timeout=timeout,
|
||||||
"default_headers": default_headers,
|
|
||||||
"api_key": api_key,
|
|
||||||
}
|
|
||||||
|
|
||||||
if base_url is not None:
|
|
||||||
merged_configs["base_url"] = base_url
|
|
||||||
else:
|
|
||||||
merged_configs["base_url"] = os.environ.get(
|
|
||||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
if not api_key:
|
||||||
|
api_key = os.environ["OPENAI_API_KEY"]
|
||||||
|
|
||||||
return AsyncOpenAI(**merged_configs)
|
default_headers = {
|
||||||
|
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
}
|
||||||
|
|
||||||
|
if client_configs is None:
|
||||||
|
client_configs = {}
|
||||||
|
|
||||||
|
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||||
|
merged_configs = {
|
||||||
|
**client_configs,
|
||||||
|
"default_headers": default_headers,
|
||||||
|
"api_key": api_key,
|
||||||
|
}
|
||||||
|
|
||||||
|
if base_url is not None:
|
||||||
|
merged_configs["base_url"] = base_url
|
||||||
|
else:
|
||||||
|
merged_configs["base_url"] = os.environ.get(
|
||||||
|
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||||
|
)
|
||||||
|
|
||||||
|
if timeout is not None:
|
||||||
|
merged_configs["timeout"] = timeout
|
||||||
|
|
||||||
|
return AsyncOpenAI(**merged_configs)
|
||||||
|
|
||||||
|
|
||||||
@retry(
|
@retry(
|
||||||
|
|
@ -141,6 +168,9 @@ async def openai_complete_if_cache(
|
||||||
stream: bool | None = None,
|
stream: bool | None = None,
|
||||||
timeout: int | None = None,
|
timeout: int | None = None,
|
||||||
keyword_extraction: bool = False,
|
keyword_extraction: bool = False,
|
||||||
|
use_azure: bool = False,
|
||||||
|
azure_deployment: str | None = None,
|
||||||
|
api_version: str | None = None,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> str:
|
) -> str:
|
||||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||||
|
|
@ -207,10 +237,14 @@ async def openai_complete_if_cache(
|
||||||
if keyword_extraction:
|
if keyword_extraction:
|
||||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||||
|
|
||||||
# Create the OpenAI client
|
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||||
openai_async_client = create_openai_async_client(
|
openai_async_client = create_openai_async_client(
|
||||||
api_key=api_key,
|
api_key=api_key,
|
||||||
base_url=base_url,
|
base_url=base_url,
|
||||||
|
use_azure=use_azure,
|
||||||
|
azure_deployment=azure_deployment,
|
||||||
|
api_version=api_version,
|
||||||
|
timeout=timeout,
|
||||||
client_configs=client_configs,
|
client_configs=client_configs,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -631,6 +665,9 @@ async def openai_embed(
|
||||||
embedding_dim: int | None = None,
|
embedding_dim: int | None = None,
|
||||||
client_configs: dict[str, Any] | None = None,
|
client_configs: dict[str, Any] | None = None,
|
||||||
token_tracker: Any | None = None,
|
token_tracker: Any | None = None,
|
||||||
|
use_azure: bool = False,
|
||||||
|
azure_deployment: str | None = None,
|
||||||
|
api_version: str | None = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""Generate embeddings for a list of texts using OpenAI's API.
|
"""Generate embeddings for a list of texts using OpenAI's API.
|
||||||
|
|
||||||
|
|
@ -658,9 +695,14 @@ async def openai_embed(
|
||||||
RateLimitError: If the OpenAI API rate limit is exceeded.
|
RateLimitError: If the OpenAI API rate limit is exceeded.
|
||||||
APITimeoutError: If the OpenAI API request times out.
|
APITimeoutError: If the OpenAI API request times out.
|
||||||
"""
|
"""
|
||||||
# Create the OpenAI client
|
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||||
openai_async_client = create_openai_async_client(
|
openai_async_client = create_openai_async_client(
|
||||||
api_key=api_key, base_url=base_url, client_configs=client_configs
|
api_key=api_key,
|
||||||
|
base_url=base_url,
|
||||||
|
use_azure=use_azure,
|
||||||
|
azure_deployment=azure_deployment,
|
||||||
|
api_version=api_version,
|
||||||
|
client_configs=client_configs,
|
||||||
)
|
)
|
||||||
|
|
||||||
async with openai_async_client:
|
async with openai_async_client:
|
||||||
|
|
@ -693,3 +735,130 @@ async def openai_embed(
|
||||||
for dp in response.data
|
for dp in response.data
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Azure OpenAI wrapper functions for backward compatibility
|
||||||
|
async def azure_openai_complete_if_cache(
|
||||||
|
model,
|
||||||
|
prompt,
|
||||||
|
system_prompt: str | None = None,
|
||||||
|
history_messages: list[dict[str, Any]] | None = None,
|
||||||
|
enable_cot: bool = False,
|
||||||
|
base_url: str | None = None,
|
||||||
|
api_key: str | None = None,
|
||||||
|
api_version: str | None = None,
|
||||||
|
keyword_extraction: bool = False,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
"""Azure OpenAI completion wrapper function.
|
||||||
|
|
||||||
|
This function provides backward compatibility by wrapping the unified
|
||||||
|
openai_complete_if_cache implementation with Azure-specific parameter handling.
|
||||||
|
"""
|
||||||
|
# Handle Azure-specific environment variables and parameters
|
||||||
|
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
||||||
|
base_url = (
|
||||||
|
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
||||||
|
)
|
||||||
|
api_key = (
|
||||||
|
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
||||||
|
)
|
||||||
|
api_version = (
|
||||||
|
api_version
|
||||||
|
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||||
|
or os.getenv("OPENAI_API_VERSION")
|
||||||
|
)
|
||||||
|
|
||||||
|
# Pop timeout from kwargs if present (will be handled by openai_complete_if_cache)
|
||||||
|
timeout = kwargs.pop("timeout", None)
|
||||||
|
|
||||||
|
# Call the unified implementation with Azure-specific parameters
|
||||||
|
return await openai_complete_if_cache(
|
||||||
|
model=model,
|
||||||
|
prompt=prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
enable_cot=enable_cot,
|
||||||
|
base_url=base_url,
|
||||||
|
api_key=api_key,
|
||||||
|
timeout=timeout,
|
||||||
|
use_azure=True,
|
||||||
|
azure_deployment=deployment,
|
||||||
|
api_version=api_version,
|
||||||
|
keyword_extraction=keyword_extraction,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def azure_openai_complete(
|
||||||
|
prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs
|
||||||
|
) -> str:
|
||||||
|
"""Azure OpenAI complete wrapper function.
|
||||||
|
|
||||||
|
Provides backward compatibility for azure_openai_complete calls.
|
||||||
|
"""
|
||||||
|
if history_messages is None:
|
||||||
|
history_messages = []
|
||||||
|
result = await azure_openai_complete_if_cache(
|
||||||
|
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
keyword_extraction=keyword_extraction,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||||
|
@retry(
|
||||||
|
stop=stop_after_attempt(3),
|
||||||
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||||
|
retry=retry_if_exception_type(
|
||||||
|
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
async def azure_openai_embed(
|
||||||
|
texts: list[str],
|
||||||
|
model: str | None = None,
|
||||||
|
base_url: str | None = None,
|
||||||
|
api_key: str | None = None,
|
||||||
|
api_version: str | None = None,
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""Azure OpenAI embedding wrapper function.
|
||||||
|
|
||||||
|
This function provides backward compatibility by wrapping the unified
|
||||||
|
openai_embed implementation with Azure-specific parameter handling.
|
||||||
|
"""
|
||||||
|
# Handle Azure-specific environment variables and parameters
|
||||||
|
deployment = (
|
||||||
|
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||||
|
or model
|
||||||
|
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||||
|
)
|
||||||
|
base_url = (
|
||||||
|
base_url
|
||||||
|
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
||||||
|
or os.getenv("EMBEDDING_BINDING_HOST")
|
||||||
|
)
|
||||||
|
api_key = (
|
||||||
|
api_key
|
||||||
|
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
||||||
|
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
||||||
|
)
|
||||||
|
api_version = (
|
||||||
|
api_version
|
||||||
|
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||||
|
or os.getenv("OPENAI_API_VERSION")
|
||||||
|
)
|
||||||
|
|
||||||
|
# Call the unified implementation with Azure-specific parameters
|
||||||
|
return await openai_embed(
|
||||||
|
texts=texts,
|
||||||
|
model=model or deployment,
|
||||||
|
base_url=base_url,
|
||||||
|
api_key=api_key,
|
||||||
|
use_azure=True,
|
||||||
|
azure_deployment=deployment,
|
||||||
|
api_version=api_version,
|
||||||
|
)
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue