Consolidate Azure OpenAI implementation into main OpenAI module
• Unified OpenAI/Azure client creation • Azure module now re-exports functions • Backward compatibility maintained • Reduced code duplication
This commit is contained in:
parent
66d6c7dd6f
commit
b709f8f869
2 changed files with 213 additions and 215 deletions
|
|
@ -1,193 +1,22 @@
|
|||
from collections.abc import Iterable
|
||||
import os
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
"""
|
||||
Azure OpenAI compatibility layer.
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("openai"):
|
||||
pm.install("openai")
|
||||
This module provides backward compatibility by re-exporting Azure OpenAI functions
|
||||
from the main openai module where the actual implementation resides.
|
||||
|
||||
from openai import (
|
||||
AsyncAzureOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
All core logic for both OpenAI and Azure OpenAI now lives in lightrag.llm.openai,
|
||||
with this module serving as a thin compatibility wrapper for existing code that
|
||||
imports from lightrag.llm.azure_openai.
|
||||
"""
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
from lightrag.llm.openai import (
|
||||
azure_openai_complete_if_cache,
|
||||
azure_openai_complete,
|
||||
azure_openai_embed,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APIConnectionError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: Iterable[ChatCompletionMessageParam] | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if enable_cot:
|
||||
logger.debug(
|
||||
"enable_cot=True is not supported for the Azure OpenAI API and will be ignored."
|
||||
)
|
||||
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
||||
base_url = (
|
||||
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
kwargs.pop("hashing_kv", None)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
# Handle keyword extraction mode
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=base_url,
|
||||
azure_deployment=deployment,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
if history_messages:
|
||||
messages.extend(history_messages)
|
||||
if prompt is not None:
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
|
||||
if hasattr(response, "__aiter__"):
|
||||
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
yield content
|
||||
|
||||
return inner()
|
||||
else:
|
||||
message = response.choices[0].message
|
||||
|
||||
# Handle parsed responses (structured output via response_format)
|
||||
# When using beta.chat.completions.parse(), the response is in message.parsed
|
||||
if hasattr(message, "parsed") and message.parsed is not None:
|
||||
# Serialize the parsed structured response to JSON
|
||||
content = message.parsed.model_dump_json()
|
||||
logger.debug("Using parsed structured response from API")
|
||||
else:
|
||||
# Handle regular content responses
|
||||
content = message.content
|
||||
if content and r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
|
||||
return content
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
result = await azure_openai_complete_if_cache(
|
||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_embed(
|
||||
texts: list[str],
|
||||
model: str | None = None,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
deployment = (
|
||||
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||
or model
|
||||
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
)
|
||||
base_url = (
|
||||
base_url
|
||||
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
||||
or os.getenv("EMBEDDING_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key
|
||||
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
||||
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=base_url,
|
||||
azure_deployment=deployment,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model or deployment, input=texts, encoding_format="float"
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
||||
__all__ = [
|
||||
"azure_openai_complete_if_cache",
|
||||
"azure_openai_complete",
|
||||
"azure_openai_embed",
|
||||
]
|
||||
|
|
|
|||
|
|
@ -77,46 +77,73 @@ class InvalidResponseError(Exception):
|
|||
def create_openai_async_client(
|
||||
api_key: str | None = None,
|
||||
base_url: str | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
timeout: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
) -> AsyncOpenAI:
|
||||
"""Create an AsyncOpenAI client with the given configuration.
|
||||
"""Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration.
|
||||
|
||||
Args:
|
||||
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
|
||||
use_azure: Whether to create an Azure OpenAI client. Default is False.
|
||||
azure_deployment: Azure OpenAI deployment name (only used when use_azure=True).
|
||||
api_version: Azure OpenAI API version (only used when use_azure=True).
|
||||
timeout: Request timeout in seconds.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
||||
Returns:
|
||||
An AsyncOpenAI client instance.
|
||||
An AsyncOpenAI or AsyncAzureOpenAI client instance.
|
||||
"""
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
if use_azure:
|
||||
from openai import AsyncAzureOpenAI
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
if not api_key:
|
||||
api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get(
|
||||
"LLM_BINDING_API_KEY"
|
||||
)
|
||||
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
else:
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
return AsyncAzureOpenAI(
|
||||
azure_endpoint=base_url,
|
||||
azure_deployment=azure_deployment,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
)
|
||||
else:
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
else:
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
)
|
||||
|
||||
if timeout is not None:
|
||||
merged_configs["timeout"] = timeout
|
||||
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
|
||||
|
||||
@retry(
|
||||
|
|
@ -141,6 +168,9 @@ async def openai_complete_if_cache(
|
|||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||
|
|
@ -207,10 +237,14 @@ async def openai_complete_if_cache(
|
|||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
|
||||
# Create the OpenAI client
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
client_configs=client_configs,
|
||||
)
|
||||
|
||||
|
|
@ -631,6 +665,9 @@ async def openai_embed(
|
|||
embedding_dim: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Generate embeddings for a list of texts using OpenAI's API.
|
||||
|
||||
|
|
@ -658,9 +695,14 @@ async def openai_embed(
|
|||
RateLimitError: If the OpenAI API rate limit is exceeded.
|
||||
APITimeoutError: If the OpenAI API request times out.
|
||||
"""
|
||||
# Create the OpenAI client
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key, base_url=base_url, client_configs=client_configs
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
client_configs=client_configs,
|
||||
)
|
||||
|
||||
async with openai_async_client:
|
||||
|
|
@ -693,3 +735,130 @@ async def openai_embed(
|
|||
for dp in response.data
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# Azure OpenAI wrapper functions for backward compatibility
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""Azure OpenAI completion wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_complete_if_cache implementation with Azure-specific parameter handling.
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
||||
base_url = (
|
||||
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
# Pop timeout from kwargs if present (will be handled by openai_complete_if_cache)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
# Call the unified implementation with Azure-specific parameters
|
||||
return await openai_complete_if_cache(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
timeout=timeout,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
"""Azure OpenAI complete wrapper function.
|
||||
|
||||
Provides backward compatibility for azure_openai_complete calls.
|
||||
"""
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
result = await azure_openai_complete_if_cache(
|
||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_embed(
|
||||
texts: list[str],
|
||||
model: str | None = None,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Azure OpenAI embedding wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_embed implementation with Azure-specific parameter handling.
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = (
|
||||
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||
or model
|
||||
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
)
|
||||
base_url = (
|
||||
base_url
|
||||
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
||||
or os.getenv("EMBEDDING_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key
|
||||
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
||||
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
# Call the unified implementation with Azure-specific parameters
|
||||
return await openai_embed(
|
||||
texts=texts,
|
||||
model=model or deployment,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue