cherry-pick a9fec267
This commit is contained in:
parent
5b207db37e
commit
b38177de80
5 changed files with 1009 additions and 167 deletions
12
env.example
12
env.example
|
|
@ -23,7 +23,7 @@ WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
|
|||
# WORKING_DIR=<absolute_path_for_working_dir>
|
||||
|
||||
### Tiktoken cache directory (Store cached files in this folder for offline deployment)
|
||||
# TIKTOKEN_CACHE_DIR=./temp/tiktoken
|
||||
# TIKTOKEN_CACHE_DIR=/app/data/tiktoken
|
||||
|
||||
### Ollama Emulating Model and Tag
|
||||
# OLLAMA_EMULATING_MODEL_NAME=lightrag
|
||||
|
|
@ -73,8 +73,14 @@ ENABLE_LLM_CACHE=true
|
|||
# MAX_RELATION_TOKENS=8000
|
||||
### control the maximum tokens send to LLM (include entities, relations and chunks)
|
||||
# MAX_TOTAL_TOKENS=30000
|
||||
### control the maximum chunk_ids stored
|
||||
# MAX_SOURCE_IDS_PER_ENTITY=500
|
||||
|
||||
### control the maximum chunk_ids stored in vector and graph db
|
||||
# MAX_SOURCE_IDS_PER_ENTITY=300
|
||||
# MAX_SOURCE_IDS_PER_RELATION=300
|
||||
### control chunk_ids limitation method: KEEP, FIFO (KEPP: Ingore New Chunks, FIFO: New chunks replace old chunks)
|
||||
# SOURCE_IDS_LIMIT_METHOD=KEEP
|
||||
### Maximum number of file paths stored in entity/relation file_path field
|
||||
# MAX_FILE_PATHS=30
|
||||
|
||||
### maximum number of related chunks per source entity or relation
|
||||
### The chunk picker uses this value to determine the total number of chunks selected from KG(knowledge graph)
|
||||
|
|
|
|||
|
|
@ -13,7 +13,6 @@ DEFAULT_MAX_GRAPH_NODES = 1000
|
|||
# Default values for extraction settings
|
||||
DEFAULT_SUMMARY_LANGUAGE = "English" # Default language for document processing
|
||||
DEFAULT_MAX_GLEANING = 1
|
||||
DEFAULT_MAX_SOURCE_IDS_PER_ENTITY = 500 # Applies to Both Graph + Vector DBs
|
||||
|
||||
# Number of description fragments to trigger LLM summary
|
||||
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE = 8
|
||||
|
|
@ -58,8 +57,24 @@ DEFAULT_HISTORY_TURNS = 0
|
|||
DEFAULT_MIN_RERANK_SCORE = 0.0
|
||||
DEFAULT_RERANK_BINDING = "null"
|
||||
|
||||
# File path configuration for vector and graph database(Should not be changed, used in Milvus Schema)
|
||||
# Default source ids limit in meta data for entity and relation
|
||||
DEFAULT_MAX_SOURCE_IDS_PER_ENTITY = 3
|
||||
DEFAULT_MAX_SOURCE_IDS_PER_RELATION = 3
|
||||
SOURCE_IDS_LIMIT_METHOD_KEEP = "KEEP"
|
||||
SOURCE_IDS_LIMIT_METHOD_FIFO = "FIFO"
|
||||
DEFAULT_SOURCE_IDS_LIMIT_METHOD = SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
VALID_SOURCE_IDS_LIMIT_METHODS = {
|
||||
SOURCE_IDS_LIMIT_METHOD_KEEP,
|
||||
SOURCE_IDS_LIMIT_METHOD_FIFO,
|
||||
}
|
||||
# Default file_path limit in meta data for entity and relation
|
||||
DEFAULT_MAX_FILE_PATHS = 2
|
||||
|
||||
# Field length of file_path in Milvus Schema for entity and relation (Should not be changed)
|
||||
# file_path must store all file paths up to the DEFAULT_MAX_FILE_PATHS limit within the metadata.
|
||||
DEFAULT_MAX_FILE_PATH_LENGTH = 32768
|
||||
# Placeholder for more file paths in meta data for entity and relation (Should not be changed)
|
||||
DEFAULT_FILE_PATH_MORE_PLACEHOLDER = "truncated"
|
||||
|
||||
# Default temperature for LLM
|
||||
DEFAULT_TEMPERATURE = 1.0
|
||||
|
|
|
|||
|
|
@ -41,10 +41,14 @@ from lightrag.constants import (
|
|||
DEFAULT_MAX_PARALLEL_INSERT,
|
||||
DEFAULT_MAX_GRAPH_NODES,
|
||||
DEFAULT_MAX_SOURCE_IDS_PER_ENTITY,
|
||||
DEFAULT_MAX_SOURCE_IDS_PER_RELATION,
|
||||
DEFAULT_ENTITY_TYPES,
|
||||
DEFAULT_SUMMARY_LANGUAGE,
|
||||
DEFAULT_LLM_TIMEOUT,
|
||||
DEFAULT_EMBEDDING_TIMEOUT,
|
||||
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
|
||||
DEFAULT_MAX_FILE_PATHS,
|
||||
DEFAULT_FILE_PATH_MORE_PLACEHOLDER,
|
||||
)
|
||||
from lightrag.utils import get_env_value
|
||||
|
||||
|
|
@ -99,6 +103,9 @@ from lightrag.utils import (
|
|||
generate_track_id,
|
||||
convert_to_user_format,
|
||||
logger,
|
||||
subtract_source_ids,
|
||||
make_relation_chunk_key,
|
||||
normalize_source_ids_limit_method,
|
||||
)
|
||||
from lightrag.types import KnowledgeGraph
|
||||
from dotenv import load_dotenv
|
||||
|
|
@ -362,10 +369,40 @@ class LightRAG:
|
|||
"""Maximum number of graph nodes to return in knowledge graph queries."""
|
||||
|
||||
max_source_ids_per_entity: int = field(
|
||||
default=get_env_value("MAX_SOURCE_IDS_PER_ENTITY", DEFAULT_MAX_SOURCE_IDS_PER_ENTITY, int)
|
||||
default=get_env_value(
|
||||
"MAX_SOURCE_IDS_PER_ENTITY", DEFAULT_MAX_SOURCE_IDS_PER_ENTITY, int
|
||||
)
|
||||
)
|
||||
"""Maximum number of source (chunk) ids in entity Grpah + VDB."""
|
||||
|
||||
max_source_ids_per_relation: int = field(
|
||||
default=get_env_value(
|
||||
"MAX_SOURCE_IDS_PER_RELATION",
|
||||
DEFAULT_MAX_SOURCE_IDS_PER_RELATION,
|
||||
int,
|
||||
)
|
||||
)
|
||||
"""Maximum number of source (chunk) ids in relation Graph + VDB."""
|
||||
|
||||
source_ids_limit_method: str = field(
|
||||
default_factory=lambda: normalize_source_ids_limit_method(
|
||||
get_env_value(
|
||||
"SOURCE_IDS_LIMIT_METHOD",
|
||||
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
|
||||
str,
|
||||
)
|
||||
)
|
||||
)
|
||||
"""Strategy for enforcing source_id limits: IGNORE_NEW or FIFO."""
|
||||
|
||||
max_file_paths: int = field(
|
||||
default=get_env_value("MAX_FILE_PATHS", DEFAULT_MAX_FILE_PATHS, int)
|
||||
)
|
||||
"""Maximum number of file paths to store in entity/relation file_path field."""
|
||||
|
||||
file_path_more_placeholder: str = field(default=DEFAULT_FILE_PATH_MORE_PLACEHOLDER)
|
||||
"""Placeholder text when file paths exceed max_file_paths limit."""
|
||||
|
||||
addon_params: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"language": get_env_value(
|
||||
|
|
@ -535,6 +572,18 @@ class LightRAG:
|
|||
embedding_func=self.embedding_func,
|
||||
)
|
||||
|
||||
self.entity_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||||
namespace=NameSpace.KV_STORE_ENTITY_CHUNKS,
|
||||
workspace=self.workspace,
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
|
||||
self.relation_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||||
namespace=NameSpace.KV_STORE_RELATION_CHUNKS,
|
||||
workspace=self.workspace,
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
|
||||
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
|
||||
namespace=NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION,
|
||||
workspace=self.workspace,
|
||||
|
|
@ -594,6 +643,8 @@ class LightRAG:
|
|||
self.text_chunks,
|
||||
self.full_entities,
|
||||
self.full_relations,
|
||||
self.entity_chunks,
|
||||
self.relation_chunks,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
self.chunks_vdb,
|
||||
|
|
@ -616,6 +667,8 @@ class LightRAG:
|
|||
("text_chunks", self.text_chunks),
|
||||
("full_entities", self.full_entities),
|
||||
("full_relations", self.full_relations),
|
||||
("entity_chunks", self.entity_chunks),
|
||||
("relation_chunks", self.relation_chunks),
|
||||
("entities_vdb", self.entities_vdb),
|
||||
("relationships_vdb", self.relationships_vdb),
|
||||
("chunks_vdb", self.chunks_vdb),
|
||||
|
|
@ -671,6 +724,13 @@ class LightRAG:
|
|||
logger.debug("No entities found in graph, skipping migration check")
|
||||
return
|
||||
|
||||
try:
|
||||
# Initialize chunk tracking storage after migration
|
||||
await self._migrate_chunk_tracking_storage()
|
||||
except Exception as e:
|
||||
logger.error(f"Error during chunk_tracking migration: {e}")
|
||||
raise e
|
||||
|
||||
# Check if full_entities and full_relations are empty
|
||||
# Get all processed documents to check their entity/relation data
|
||||
try:
|
||||
|
|
@ -711,11 +771,11 @@ class LightRAG:
|
|||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during migration check: {e}")
|
||||
# Don't raise the error, just log it to avoid breaking initialization
|
||||
raise e
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in data migration check: {e}")
|
||||
# Don't raise the error to avoid breaking initialization
|
||||
raise e
|
||||
|
||||
async def _migrate_entity_relation_data(self, processed_docs: dict):
|
||||
"""Migrate existing entity and relation data to full_entities and full_relations storage"""
|
||||
|
|
@ -814,6 +874,140 @@ class LightRAG:
|
|||
f"Data migration completed: migrated {migration_count} documents with entities/relations"
|
||||
)
|
||||
|
||||
async def _migrate_chunk_tracking_storage(self) -> None:
|
||||
"""Ensure entity/relation chunk tracking KV stores exist and are seeded."""
|
||||
|
||||
if not self.entity_chunks or not self.relation_chunks:
|
||||
return
|
||||
|
||||
need_entity_migration = False
|
||||
need_relation_migration = False
|
||||
|
||||
try:
|
||||
need_entity_migration = await self.entity_chunks.is_empty()
|
||||
except Exception as exc: # pragma: no cover - defensive logging
|
||||
logger.error(f"Failed to check entity chunks storage: {exc}")
|
||||
need_entity_migration = True
|
||||
|
||||
try:
|
||||
need_relation_migration = await self.relation_chunks.is_empty()
|
||||
except Exception as exc: # pragma: no cover - defensive logging
|
||||
logger.error(f"Failed to check relation chunks storage: {exc}")
|
||||
need_relation_migration = True
|
||||
|
||||
if not need_entity_migration and not need_relation_migration:
|
||||
return
|
||||
|
||||
BATCH_SIZE = 500 # Process 500 records per batch
|
||||
|
||||
if need_entity_migration:
|
||||
try:
|
||||
nodes = await self.chunk_entity_relation_graph.get_all_nodes()
|
||||
except Exception as exc:
|
||||
logger.error(f"Failed to fetch nodes for chunk migration: {exc}")
|
||||
nodes = []
|
||||
|
||||
logger.info(f"Starting chunk_tracking data migration: {len(nodes)} nodes")
|
||||
|
||||
# Process nodes in batches
|
||||
total_nodes = len(nodes)
|
||||
total_batches = (total_nodes + BATCH_SIZE - 1) // BATCH_SIZE
|
||||
total_migrated = 0
|
||||
|
||||
for batch_idx in range(total_batches):
|
||||
start_idx = batch_idx * BATCH_SIZE
|
||||
end_idx = min((batch_idx + 1) * BATCH_SIZE, total_nodes)
|
||||
batch_nodes = nodes[start_idx:end_idx]
|
||||
|
||||
upsert_payload: dict[str, dict[str, object]] = {}
|
||||
for node in batch_nodes:
|
||||
entity_id = node.get("entity_id") or node.get("id")
|
||||
if not entity_id:
|
||||
continue
|
||||
|
||||
raw_source = node.get("source_id") or ""
|
||||
chunk_ids = [
|
||||
chunk_id
|
||||
for chunk_id in raw_source.split(GRAPH_FIELD_SEP)
|
||||
if chunk_id
|
||||
]
|
||||
if not chunk_ids:
|
||||
continue
|
||||
|
||||
upsert_payload[entity_id] = {
|
||||
"chunk_ids": chunk_ids,
|
||||
"count": len(chunk_ids),
|
||||
}
|
||||
|
||||
if upsert_payload:
|
||||
await self.entity_chunks.upsert(upsert_payload)
|
||||
total_migrated += len(upsert_payload)
|
||||
logger.info(
|
||||
f"Processed entity batch {batch_idx + 1}/{total_batches}: {len(upsert_payload)} records (total: {total_migrated}/{total_nodes})"
|
||||
)
|
||||
|
||||
if total_migrated > 0:
|
||||
# Persist entity_chunks data to disk
|
||||
await self.entity_chunks.index_done_callback()
|
||||
logger.info(
|
||||
f"Entity chunk_tracking migration completed: {total_migrated} records persisted"
|
||||
)
|
||||
|
||||
if need_relation_migration:
|
||||
try:
|
||||
edges = await self.chunk_entity_relation_graph.get_all_edges()
|
||||
except Exception as exc:
|
||||
logger.error(f"Failed to fetch edges for chunk migration: {exc}")
|
||||
edges = []
|
||||
|
||||
logger.info(f"Starting chunk_tracking data migration: {len(edges)} edges")
|
||||
|
||||
# Process edges in batches
|
||||
total_edges = len(edges)
|
||||
total_batches = (total_edges + BATCH_SIZE - 1) // BATCH_SIZE
|
||||
total_migrated = 0
|
||||
|
||||
for batch_idx in range(total_batches):
|
||||
start_idx = batch_idx * BATCH_SIZE
|
||||
end_idx = min((batch_idx + 1) * BATCH_SIZE, total_edges)
|
||||
batch_edges = edges[start_idx:end_idx]
|
||||
|
||||
upsert_payload: dict[str, dict[str, object]] = {}
|
||||
for edge in batch_edges:
|
||||
src = edge.get("source") or edge.get("src_id") or edge.get("src")
|
||||
tgt = edge.get("target") or edge.get("tgt_id") or edge.get("tgt")
|
||||
if not src or not tgt:
|
||||
continue
|
||||
|
||||
raw_source = edge.get("source_id") or ""
|
||||
chunk_ids = [
|
||||
chunk_id
|
||||
for chunk_id in raw_source.split(GRAPH_FIELD_SEP)
|
||||
if chunk_id
|
||||
]
|
||||
if not chunk_ids:
|
||||
continue
|
||||
|
||||
storage_key = make_relation_chunk_key(src, tgt)
|
||||
upsert_payload[storage_key] = {
|
||||
"chunk_ids": chunk_ids,
|
||||
"count": len(chunk_ids),
|
||||
}
|
||||
|
||||
if upsert_payload:
|
||||
await self.relation_chunks.upsert(upsert_payload)
|
||||
total_migrated += len(upsert_payload)
|
||||
logger.info(
|
||||
f"Processed relation batch {batch_idx + 1}/{total_batches}: {len(upsert_payload)} records (total: {total_migrated}/{total_edges})"
|
||||
)
|
||||
|
||||
if total_migrated > 0:
|
||||
# Persist relation_chunks data to disk
|
||||
await self.relation_chunks.index_done_callback()
|
||||
logger.info(
|
||||
f"Relation chunk_tracking migration completed: {total_migrated} records persisted"
|
||||
)
|
||||
|
||||
async def get_graph_labels(self):
|
||||
text = await self.chunk_entity_relation_graph.get_all_labels()
|
||||
return text
|
||||
|
|
@ -1676,6 +1870,8 @@ class LightRAG:
|
|||
pipeline_status=pipeline_status,
|
||||
pipeline_status_lock=pipeline_status_lock,
|
||||
llm_response_cache=self.llm_response_cache,
|
||||
entity_chunks_storage=self.entity_chunks,
|
||||
relation_chunks_storage=self.relation_chunks,
|
||||
current_file_number=current_file_number,
|
||||
total_files=total_files,
|
||||
file_path=file_path,
|
||||
|
|
@ -1845,6 +2041,8 @@ class LightRAG:
|
|||
self.text_chunks,
|
||||
self.full_entities,
|
||||
self.full_relations,
|
||||
self.entity_chunks,
|
||||
self.relation_chunks,
|
||||
self.llm_response_cache,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
|
|
@ -2718,9 +2916,11 @@ class LightRAG:
|
|||
|
||||
# 4. Analyze entities and relationships that will be affected
|
||||
entities_to_delete = set()
|
||||
entities_to_rebuild = {} # entity_name -> remaining_chunk_ids
|
||||
entities_to_rebuild = {} # entity_name -> remaining chunk id list
|
||||
relationships_to_delete = set()
|
||||
relationships_to_rebuild = {} # (src, tgt) -> remaining_chunk_ids
|
||||
relationships_to_rebuild = {} # (src, tgt) -> remaining chunk id list
|
||||
entity_chunk_updates: dict[str, list[str]] = {}
|
||||
relation_chunk_updates: dict[tuple[str, str], list[str]] = {}
|
||||
|
||||
try:
|
||||
# Get affected entities and relations from full_entities and full_relations storage
|
||||
|
|
@ -2776,14 +2976,41 @@ class LightRAG:
|
|||
# Process entities
|
||||
for node_data in affected_nodes:
|
||||
node_label = node_data.get("entity_id")
|
||||
if node_label and "source_id" in node_data:
|
||||
sources = set(node_data["source_id"].split(GRAPH_FIELD_SEP))
|
||||
remaining_sources = sources - chunk_ids
|
||||
if not node_label:
|
||||
continue
|
||||
|
||||
if not remaining_sources:
|
||||
entities_to_delete.add(node_label)
|
||||
elif remaining_sources != sources:
|
||||
entities_to_rebuild[node_label] = remaining_sources
|
||||
existing_sources: list[str] = []
|
||||
if self.entity_chunks:
|
||||
stored_chunks = await self.entity_chunks.get_by_id(node_label)
|
||||
if stored_chunks and isinstance(stored_chunks, dict):
|
||||
existing_sources = [
|
||||
chunk_id
|
||||
for chunk_id in stored_chunks.get("chunk_ids", [])
|
||||
if chunk_id
|
||||
]
|
||||
|
||||
if not existing_sources and node_data.get("source_id"):
|
||||
existing_sources = [
|
||||
chunk_id
|
||||
for chunk_id in node_data["source_id"].split(
|
||||
GRAPH_FIELD_SEP
|
||||
)
|
||||
if chunk_id
|
||||
]
|
||||
|
||||
if not existing_sources:
|
||||
continue
|
||||
|
||||
remaining_sources = subtract_source_ids(existing_sources, chunk_ids)
|
||||
|
||||
if not remaining_sources:
|
||||
entities_to_delete.add(node_label)
|
||||
entity_chunk_updates[node_label] = []
|
||||
elif remaining_sources != existing_sources:
|
||||
entities_to_rebuild[node_label] = remaining_sources
|
||||
entity_chunk_updates[node_label] = remaining_sources
|
||||
else:
|
||||
logger.info(f"Untouch entity: {node_label}")
|
||||
|
||||
async with pipeline_status_lock:
|
||||
log_message = f"Found {len(entities_to_rebuild)} affected entities"
|
||||
|
|
@ -2796,21 +3023,51 @@ class LightRAG:
|
|||
src = edge_data.get("source")
|
||||
tgt = edge_data.get("target")
|
||||
|
||||
if src and tgt and "source_id" in edge_data:
|
||||
edge_tuple = tuple(sorted((src, tgt)))
|
||||
if (
|
||||
edge_tuple in relationships_to_delete
|
||||
or edge_tuple in relationships_to_rebuild
|
||||
):
|
||||
continue
|
||||
if not src or not tgt or "source_id" not in edge_data:
|
||||
continue
|
||||
|
||||
sources = set(edge_data["source_id"].split(GRAPH_FIELD_SEP))
|
||||
remaining_sources = sources - chunk_ids
|
||||
edge_tuple = tuple(sorted((src, tgt)))
|
||||
if (
|
||||
edge_tuple in relationships_to_delete
|
||||
or edge_tuple in relationships_to_rebuild
|
||||
):
|
||||
continue
|
||||
|
||||
if not remaining_sources:
|
||||
relationships_to_delete.add(edge_tuple)
|
||||
elif remaining_sources != sources:
|
||||
relationships_to_rebuild[edge_tuple] = remaining_sources
|
||||
existing_sources: list[str] = []
|
||||
if self.relation_chunks:
|
||||
storage_key = make_relation_chunk_key(src, tgt)
|
||||
stored_chunks = await self.relation_chunks.get_by_id(
|
||||
storage_key
|
||||
)
|
||||
if stored_chunks and isinstance(stored_chunks, dict):
|
||||
existing_sources = [
|
||||
chunk_id
|
||||
for chunk_id in stored_chunks.get("chunk_ids", [])
|
||||
if chunk_id
|
||||
]
|
||||
|
||||
if not existing_sources:
|
||||
existing_sources = [
|
||||
chunk_id
|
||||
for chunk_id in edge_data["source_id"].split(
|
||||
GRAPH_FIELD_SEP
|
||||
)
|
||||
if chunk_id
|
||||
]
|
||||
|
||||
if not existing_sources:
|
||||
continue
|
||||
|
||||
remaining_sources = subtract_source_ids(existing_sources, chunk_ids)
|
||||
|
||||
if not remaining_sources:
|
||||
relationships_to_delete.add(edge_tuple)
|
||||
relation_chunk_updates[edge_tuple] = []
|
||||
elif remaining_sources != existing_sources:
|
||||
relationships_to_rebuild[edge_tuple] = remaining_sources
|
||||
relation_chunk_updates[edge_tuple] = remaining_sources
|
||||
else:
|
||||
logger.info(f"Untouch relation: {edge_tuple}")
|
||||
|
||||
async with pipeline_status_lock:
|
||||
log_message = (
|
||||
|
|
@ -2820,6 +3077,45 @@ class LightRAG:
|
|||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
current_time = int(time.time())
|
||||
|
||||
if entity_chunk_updates and self.entity_chunks:
|
||||
entity_upsert_payload = {}
|
||||
entity_delete_ids: set[str] = set()
|
||||
for entity_name, remaining in entity_chunk_updates.items():
|
||||
if not remaining:
|
||||
entity_delete_ids.add(entity_name)
|
||||
else:
|
||||
entity_upsert_payload[entity_name] = {
|
||||
"chunk_ids": remaining,
|
||||
"count": len(remaining),
|
||||
"updated_at": current_time,
|
||||
}
|
||||
|
||||
if entity_delete_ids:
|
||||
await self.entity_chunks.delete(list(entity_delete_ids))
|
||||
if entity_upsert_payload:
|
||||
await self.entity_chunks.upsert(entity_upsert_payload)
|
||||
|
||||
if relation_chunk_updates and self.relation_chunks:
|
||||
relation_upsert_payload = {}
|
||||
relation_delete_ids: set[str] = set()
|
||||
for edge_tuple, remaining in relation_chunk_updates.items():
|
||||
storage_key = make_relation_chunk_key(*edge_tuple)
|
||||
if not remaining:
|
||||
relation_delete_ids.add(storage_key)
|
||||
else:
|
||||
relation_upsert_payload[storage_key] = {
|
||||
"chunk_ids": remaining,
|
||||
"count": len(remaining),
|
||||
"updated_at": current_time,
|
||||
}
|
||||
|
||||
if relation_delete_ids:
|
||||
await self.relation_chunks.delete(list(relation_delete_ids))
|
||||
if relation_upsert_payload:
|
||||
await self.relation_chunks.upsert(relation_upsert_payload)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process graph analysis results: {e}")
|
||||
raise Exception(f"Failed to process graph dependencies: {e}") from e
|
||||
|
|
@ -2914,6 +3210,8 @@ class LightRAG:
|
|||
global_config=asdict(self),
|
||||
pipeline_status=pipeline_status,
|
||||
pipeline_status_lock=pipeline_status_lock,
|
||||
entity_chunks_storage=self.entity_chunks,
|
||||
relation_chunks_storage=self.relation_chunks,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ import json_repair
|
|||
from typing import Any, AsyncIterator, overload, Literal
|
||||
from collections import Counter, defaultdict
|
||||
|
||||
from .utils import (
|
||||
from lightrag.utils import (
|
||||
logger,
|
||||
compute_mdhash_id,
|
||||
Tokenizer,
|
||||
|
|
@ -26,15 +26,16 @@ from .utils import (
|
|||
pick_by_weighted_polling,
|
||||
pick_by_vector_similarity,
|
||||
process_chunks_unified,
|
||||
build_file_path,
|
||||
truncate_entity_source_id,
|
||||
safe_vdb_operation_with_exception,
|
||||
create_prefixed_exception,
|
||||
fix_tuple_delimiter_corruption,
|
||||
convert_to_user_format,
|
||||
generate_reference_list_from_chunks,
|
||||
apply_source_ids_limit,
|
||||
merge_source_ids,
|
||||
make_relation_chunk_key,
|
||||
)
|
||||
from .base import (
|
||||
from lightrag.base import (
|
||||
BaseGraphStorage,
|
||||
BaseKVStorage,
|
||||
BaseVectorStorage,
|
||||
|
|
@ -43,8 +44,8 @@ from .base import (
|
|||
QueryResult,
|
||||
QueryContextResult,
|
||||
)
|
||||
from .prompt import PROMPTS
|
||||
from .constants import (
|
||||
from lightrag.prompt import PROMPTS
|
||||
from lightrag.constants import (
|
||||
GRAPH_FIELD_SEP,
|
||||
DEFAULT_MAX_ENTITY_TOKENS,
|
||||
DEFAULT_MAX_RELATION_TOKENS,
|
||||
|
|
@ -53,8 +54,11 @@ from .constants import (
|
|||
DEFAULT_KG_CHUNK_PICK_METHOD,
|
||||
DEFAULT_ENTITY_TYPES,
|
||||
DEFAULT_SUMMARY_LANGUAGE,
|
||||
SOURCE_IDS_LIMIT_METHOD_KEEP,
|
||||
SOURCE_IDS_LIMIT_METHOD_FIFO,
|
||||
DEFAULT_FILE_PATH_MORE_PLACEHOLDER,
|
||||
)
|
||||
from .kg.shared_storage import get_storage_keyed_lock
|
||||
from lightrag.kg.shared_storage import get_storage_keyed_lock
|
||||
import time
|
||||
from dotenv import load_dotenv
|
||||
|
||||
|
|
@ -474,8 +478,8 @@ async def _handle_single_relationship_extraction(
|
|||
|
||||
|
||||
async def _rebuild_knowledge_from_chunks(
|
||||
entities_to_rebuild: dict[str, set[str]],
|
||||
relationships_to_rebuild: dict[tuple[str, str], set[str]],
|
||||
entities_to_rebuild: dict[str, list[str]],
|
||||
relationships_to_rebuild: dict[tuple[str, str], list[str]],
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
|
|
@ -484,6 +488,8 @@ async def _rebuild_knowledge_from_chunks(
|
|||
global_config: dict[str, str],
|
||||
pipeline_status: dict | None = None,
|
||||
pipeline_status_lock=None,
|
||||
entity_chunks_storage: BaseKVStorage | None = None,
|
||||
relation_chunks_storage: BaseKVStorage | None = None,
|
||||
) -> None:
|
||||
"""Rebuild entity and relationship descriptions from cached extraction results with parallel processing
|
||||
|
||||
|
|
@ -492,8 +498,8 @@ async def _rebuild_knowledge_from_chunks(
|
|||
controlled by llm_model_max_async and using get_storage_keyed_lock for data consistency.
|
||||
|
||||
Args:
|
||||
entities_to_rebuild: Dict mapping entity_name -> set of remaining chunk_ids
|
||||
relationships_to_rebuild: Dict mapping (src, tgt) -> set of remaining chunk_ids
|
||||
entities_to_rebuild: Dict mapping entity_name -> list of remaining chunk_ids
|
||||
relationships_to_rebuild: Dict mapping (src, tgt) -> list of remaining chunk_ids
|
||||
knowledge_graph_inst: Knowledge graph storage
|
||||
entities_vdb: Entity vector database
|
||||
relationships_vdb: Relationship vector database
|
||||
|
|
@ -502,6 +508,8 @@ async def _rebuild_knowledge_from_chunks(
|
|||
global_config: Global configuration containing llm_model_max_async
|
||||
pipeline_status: Pipeline status dictionary
|
||||
pipeline_status_lock: Lock for pipeline status
|
||||
entity_chunks_storage: KV storage maintaining full chunk IDs per entity
|
||||
relation_chunks_storage: KV storage maintaining full chunk IDs per relation
|
||||
"""
|
||||
if not entities_to_rebuild and not relationships_to_rebuild:
|
||||
return
|
||||
|
|
@ -641,10 +649,11 @@ async def _rebuild_knowledge_from_chunks(
|
|||
chunk_entities=chunk_entities,
|
||||
llm_response_cache=llm_response_cache,
|
||||
global_config=global_config,
|
||||
entity_chunks_storage=entity_chunks_storage,
|
||||
)
|
||||
rebuilt_entities_count += 1
|
||||
status_message = (
|
||||
f"Rebuilt `{entity_name}` from {len(chunk_ids)} chunks"
|
||||
f"Rebuild `{entity_name}` from {len(chunk_ids)} chunks"
|
||||
)
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
|
|
@ -682,16 +691,11 @@ async def _rebuild_knowledge_from_chunks(
|
|||
chunk_relationships=chunk_relationships,
|
||||
llm_response_cache=llm_response_cache,
|
||||
global_config=global_config,
|
||||
relation_chunks_storage=relation_chunks_storage,
|
||||
pipeline_status=pipeline_status,
|
||||
pipeline_status_lock=pipeline_status_lock,
|
||||
)
|
||||
rebuilt_relationships_count += 1
|
||||
status_message = (
|
||||
f"Rebuilt `{src} - {tgt}` from {len(chunk_ids)} chunks"
|
||||
)
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
except Exception as e:
|
||||
failed_relationships_count += 1
|
||||
status_message = f"Failed to rebuild `{src} - {tgt}`: {e}"
|
||||
|
|
@ -1002,10 +1006,13 @@ async def _rebuild_single_entity(
|
|||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
entity_name: str,
|
||||
chunk_ids: set[str],
|
||||
chunk_ids: list[str],
|
||||
chunk_entities: dict,
|
||||
llm_response_cache: BaseKVStorage,
|
||||
global_config: dict[str, str],
|
||||
entity_chunks_storage: BaseKVStorage | None = None,
|
||||
pipeline_status: dict | None = None,
|
||||
pipeline_status_lock=None,
|
||||
) -> None:
|
||||
"""Rebuild a single entity from cached extraction results"""
|
||||
|
||||
|
|
@ -1016,7 +1023,11 @@ async def _rebuild_single_entity(
|
|||
|
||||
# Helper function to update entity in both graph and vector storage
|
||||
async def _update_entity_storage(
|
||||
final_description: str, entity_type: str, file_paths: set[str]
|
||||
final_description: str,
|
||||
entity_type: str,
|
||||
file_paths: set[str],
|
||||
source_chunk_ids: list[str],
|
||||
truncation_info: str = "",
|
||||
):
|
||||
try:
|
||||
# Update entity in graph storage (critical path)
|
||||
|
|
@ -1024,10 +1035,12 @@ async def _rebuild_single_entity(
|
|||
**current_entity,
|
||||
"description": final_description,
|
||||
"entity_type": entity_type,
|
||||
"source_id": GRAPH_FIELD_SEP.join(chunk_ids),
|
||||
"source_id": GRAPH_FIELD_SEP.join(source_chunk_ids),
|
||||
"file_path": GRAPH_FIELD_SEP.join(file_paths)
|
||||
if file_paths
|
||||
else current_entity.get("file_path", "unknown_source"),
|
||||
"created_at": int(time.time()),
|
||||
"truncate": truncation_info,
|
||||
}
|
||||
await knowledge_graph_inst.upsert_node(entity_name, updated_entity_data)
|
||||
|
||||
|
|
@ -1060,9 +1073,33 @@ async def _rebuild_single_entity(
|
|||
logger.error(error_msg)
|
||||
raise # Re-raise exception
|
||||
|
||||
# Collect all entity data from relevant chunks
|
||||
# normalized_chunk_ids = merge_source_ids([], chunk_ids)
|
||||
normalized_chunk_ids = chunk_ids
|
||||
|
||||
if entity_chunks_storage is not None and normalized_chunk_ids:
|
||||
await entity_chunks_storage.upsert(
|
||||
{
|
||||
entity_name: {
|
||||
"chunk_ids": normalized_chunk_ids,
|
||||
"count": len(normalized_chunk_ids),
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
limit_method = (
|
||||
global_config.get("source_ids_limit_method") or SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
)
|
||||
|
||||
limited_chunk_ids = apply_source_ids_limit(
|
||||
normalized_chunk_ids,
|
||||
global_config["max_source_ids_per_entity"],
|
||||
limit_method,
|
||||
identifier=f"`{entity_name}`",
|
||||
)
|
||||
|
||||
# Collect all entity data from relevant (limited) chunks
|
||||
all_entity_data = []
|
||||
for chunk_id in chunk_ids:
|
||||
for chunk_id in limited_chunk_ids:
|
||||
if chunk_id in chunk_entities and entity_name in chunk_entities[chunk_id]:
|
||||
all_entity_data.extend(chunk_entities[chunk_id][entity_name])
|
||||
|
||||
|
|
@ -1109,13 +1146,19 @@ async def _rebuild_single_entity(
|
|||
final_description = current_entity.get("description", "")
|
||||
|
||||
entity_type = current_entity.get("entity_type", "UNKNOWN")
|
||||
await _update_entity_storage(final_description, entity_type, file_paths)
|
||||
await _update_entity_storage(
|
||||
final_description,
|
||||
entity_type,
|
||||
file_paths,
|
||||
limited_chunk_ids,
|
||||
)
|
||||
return
|
||||
|
||||
# Process cached entity data
|
||||
descriptions = []
|
||||
entity_types = []
|
||||
file_paths = set()
|
||||
file_paths_list = []
|
||||
seen_paths = set()
|
||||
|
||||
for entity_data in all_entity_data:
|
||||
if entity_data.get("description"):
|
||||
|
|
@ -1123,7 +1166,35 @@ async def _rebuild_single_entity(
|
|||
if entity_data.get("entity_type"):
|
||||
entity_types.append(entity_data["entity_type"])
|
||||
if entity_data.get("file_path"):
|
||||
file_paths.add(entity_data["file_path"])
|
||||
file_path = entity_data["file_path"]
|
||||
if file_path and file_path not in seen_paths:
|
||||
file_paths_list.append(file_path)
|
||||
seen_paths.add(file_path)
|
||||
|
||||
# Apply MAX_FILE_PATHS limit
|
||||
max_file_paths = global_config.get("max_file_paths")
|
||||
file_path_placeholder = global_config.get(
|
||||
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
|
||||
)
|
||||
limit_method = global_config.get("source_ids_limit_method")
|
||||
|
||||
original_count = len(file_paths_list)
|
||||
if original_count > max_file_paths:
|
||||
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
|
||||
# FIFO: keep tail (newest), discard head
|
||||
file_paths_list = file_paths_list[-max_file_paths:]
|
||||
else:
|
||||
# KEEP: keep head (earliest), discard tail
|
||||
file_paths_list = file_paths_list[:max_file_paths]
|
||||
|
||||
file_paths_list.append(
|
||||
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
|
||||
)
|
||||
logger.info(
|
||||
f"Limited `{entity_name}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
|
||||
)
|
||||
|
||||
file_paths = set(file_paths_list)
|
||||
|
||||
# Remove duplicates while preserving order
|
||||
description_list = list(dict.fromkeys(descriptions))
|
||||
|
|
@ -1149,7 +1220,31 @@ async def _rebuild_single_entity(
|
|||
else:
|
||||
final_description = current_entity.get("description", "")
|
||||
|
||||
await _update_entity_storage(final_description, entity_type, file_paths)
|
||||
if len(limited_chunk_ids) < len(normalized_chunk_ids):
|
||||
truncation_info = (
|
||||
f"{limit_method}:{len(limited_chunk_ids)}/{len(normalized_chunk_ids)}"
|
||||
)
|
||||
else:
|
||||
truncation_info = ""
|
||||
|
||||
await _update_entity_storage(
|
||||
final_description,
|
||||
entity_type,
|
||||
file_paths,
|
||||
limited_chunk_ids,
|
||||
truncation_info,
|
||||
)
|
||||
|
||||
# Log rebuild completion with truncation info
|
||||
status_message = f"Rebuild `{entity_name}` from {len(chunk_ids)} chunks"
|
||||
if truncation_info:
|
||||
status_message += f" ({truncation_info})"
|
||||
logger.info(status_message)
|
||||
# Update pipeline status
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
|
||||
|
||||
async def _rebuild_single_relationship(
|
||||
|
|
@ -1157,10 +1252,13 @@ async def _rebuild_single_relationship(
|
|||
relationships_vdb: BaseVectorStorage,
|
||||
src: str,
|
||||
tgt: str,
|
||||
chunk_ids: set[str],
|
||||
chunk_ids: list[str],
|
||||
chunk_relationships: dict,
|
||||
llm_response_cache: BaseKVStorage,
|
||||
global_config: dict[str, str],
|
||||
relation_chunks_storage: BaseKVStorage | None = None,
|
||||
pipeline_status: dict | None = None,
|
||||
pipeline_status_lock=None,
|
||||
) -> None:
|
||||
"""Rebuild a single relationship from cached extraction results
|
||||
|
||||
|
|
@ -1173,9 +1271,33 @@ async def _rebuild_single_relationship(
|
|||
if not current_relationship:
|
||||
return
|
||||
|
||||
# normalized_chunk_ids = merge_source_ids([], chunk_ids)
|
||||
normalized_chunk_ids = chunk_ids
|
||||
|
||||
if relation_chunks_storage is not None and normalized_chunk_ids:
|
||||
storage_key = make_relation_chunk_key(src, tgt)
|
||||
await relation_chunks_storage.upsert(
|
||||
{
|
||||
storage_key: {
|
||||
"chunk_ids": normalized_chunk_ids,
|
||||
"count": len(normalized_chunk_ids),
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
limit_method = (
|
||||
global_config.get("source_ids_limit_method") or SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
)
|
||||
limited_chunk_ids = apply_source_ids_limit(
|
||||
normalized_chunk_ids,
|
||||
global_config["max_source_ids_per_relation"],
|
||||
limit_method,
|
||||
identifier=f"`{src}`~`{tgt}`",
|
||||
)
|
||||
|
||||
# Collect all relationship data from relevant chunks
|
||||
all_relationship_data = []
|
||||
for chunk_id in chunk_ids:
|
||||
for chunk_id in limited_chunk_ids:
|
||||
if chunk_id in chunk_relationships:
|
||||
# Check both (src, tgt) and (tgt, src) since relationships can be bidirectional
|
||||
for edge_key in [(src, tgt), (tgt, src)]:
|
||||
|
|
@ -1192,7 +1314,8 @@ async def _rebuild_single_relationship(
|
|||
descriptions = []
|
||||
keywords = []
|
||||
weights = []
|
||||
file_paths = set()
|
||||
file_paths_list = []
|
||||
seen_paths = set()
|
||||
|
||||
for rel_data in all_relationship_data:
|
||||
if rel_data.get("description"):
|
||||
|
|
@ -1202,7 +1325,35 @@ async def _rebuild_single_relationship(
|
|||
if rel_data.get("weight"):
|
||||
weights.append(rel_data["weight"])
|
||||
if rel_data.get("file_path"):
|
||||
file_paths.add(rel_data["file_path"])
|
||||
file_path = rel_data["file_path"]
|
||||
if file_path and file_path not in seen_paths:
|
||||
file_paths_list.append(file_path)
|
||||
seen_paths.add(file_path)
|
||||
|
||||
# Apply count limit
|
||||
max_file_paths = global_config.get("max_file_paths")
|
||||
file_path_placeholder = global_config.get(
|
||||
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
|
||||
)
|
||||
limit_method = global_config.get("source_ids_limit_method")
|
||||
|
||||
original_count = len(file_paths_list)
|
||||
if original_count > max_file_paths:
|
||||
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
|
||||
# FIFO: keep tail (newest), discard head
|
||||
file_paths_list = file_paths_list[-max_file_paths:]
|
||||
else:
|
||||
# KEEP: keep head (earliest), discard tail
|
||||
file_paths_list = file_paths_list[:max_file_paths]
|
||||
|
||||
file_paths_list.append(
|
||||
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
|
||||
)
|
||||
logger.info(
|
||||
f"Limited `{src}`~`{tgt}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
|
||||
)
|
||||
|
||||
file_paths = set(file_paths_list)
|
||||
|
||||
# Remove duplicates while preserving order
|
||||
description_list = list(dict.fromkeys(descriptions))
|
||||
|
|
@ -1230,6 +1381,13 @@ async def _rebuild_single_relationship(
|
|||
# fallback to keep current(unchanged)
|
||||
final_description = current_relationship.get("description", "")
|
||||
|
||||
if len(limited_chunk_ids) < len(normalized_chunk_ids):
|
||||
truncation_info = (
|
||||
f"{limit_method}:{len(limited_chunk_ids)}/{len(normalized_chunk_ids)}"
|
||||
)
|
||||
else:
|
||||
truncation_info = ""
|
||||
|
||||
# Update relationship in graph storage
|
||||
updated_relationship_data = {
|
||||
**current_relationship,
|
||||
|
|
@ -1238,10 +1396,11 @@ async def _rebuild_single_relationship(
|
|||
else current_relationship.get("description", ""),
|
||||
"keywords": combined_keywords,
|
||||
"weight": weight,
|
||||
"source_id": GRAPH_FIELD_SEP.join(chunk_ids),
|
||||
"source_id": GRAPH_FIELD_SEP.join(limited_chunk_ids),
|
||||
"file_path": GRAPH_FIELD_SEP.join([fp for fp in file_paths if fp])
|
||||
if file_paths
|
||||
else current_relationship.get("file_path", "unknown_source"),
|
||||
"truncate": truncation_info,
|
||||
}
|
||||
await knowledge_graph_inst.upsert_edge(src, tgt, updated_relationship_data)
|
||||
|
||||
|
|
@ -1287,6 +1446,25 @@ async def _rebuild_single_relationship(
|
|||
logger.error(error_msg)
|
||||
raise # Re-raise exception
|
||||
|
||||
# Log rebuild completion with truncation info
|
||||
status_message = f"Rebuild `{src} - {tgt}` from {len(chunk_ids)} chunks"
|
||||
if truncation_info:
|
||||
status_message += f" ({truncation_info})"
|
||||
# Add truncation info from apply_source_ids_limit if truncation occurred
|
||||
if len(limited_chunk_ids) < len(normalized_chunk_ids):
|
||||
truncation_info = (
|
||||
f" ({limit_method}:{len(limited_chunk_ids)}/{len(normalized_chunk_ids)})"
|
||||
)
|
||||
status_message += truncation_info
|
||||
|
||||
logger.info(status_message)
|
||||
|
||||
# Update pipeline status
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
|
||||
|
||||
async def _merge_nodes_then_upsert(
|
||||
entity_name: str,
|
||||
|
|
@ -1296,6 +1474,7 @@ async def _merge_nodes_then_upsert(
|
|||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
entity_chunks_storage: BaseKVStorage | None = None,
|
||||
):
|
||||
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
|
||||
already_entity_types = []
|
||||
|
|
@ -1318,10 +1497,76 @@ async def _merge_nodes_then_upsert(
|
|||
reverse=True,
|
||||
)[0][0] # Get the entity type with the highest count
|
||||
|
||||
original_nodes_count = len(nodes_data)
|
||||
|
||||
new_source_ids = [dp["source_id"] for dp in nodes_data if dp.get("source_id")]
|
||||
|
||||
existing_full_source_ids = []
|
||||
if entity_chunks_storage is not None:
|
||||
stored_chunks = await entity_chunks_storage.get_by_id(entity_name)
|
||||
if stored_chunks and isinstance(stored_chunks, dict):
|
||||
existing_full_source_ids = [
|
||||
chunk_id for chunk_id in stored_chunks.get("chunk_ids", []) if chunk_id
|
||||
]
|
||||
|
||||
if not existing_full_source_ids:
|
||||
existing_full_source_ids = [
|
||||
chunk_id for chunk_id in already_source_ids if chunk_id
|
||||
]
|
||||
|
||||
full_source_ids = merge_source_ids(existing_full_source_ids, new_source_ids)
|
||||
|
||||
if entity_chunks_storage is not None and full_source_ids:
|
||||
await entity_chunks_storage.upsert(
|
||||
{
|
||||
entity_name: {
|
||||
"chunk_ids": full_source_ids,
|
||||
"count": len(full_source_ids),
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
limit_method = global_config.get("source_ids_limit_method")
|
||||
max_source_limit = global_config.get("max_source_ids_per_entity")
|
||||
source_ids = apply_source_ids_limit(
|
||||
full_source_ids,
|
||||
max_source_limit,
|
||||
limit_method,
|
||||
identifier=f"`{entity_name}`",
|
||||
)
|
||||
|
||||
# Only apply filtering in KEEP(ignore new) mode
|
||||
if limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP:
|
||||
allowed_source_ids = set(source_ids)
|
||||
filtered_nodes = []
|
||||
for dp in nodes_data:
|
||||
source_id = dp.get("source_id")
|
||||
# Skip descriptions sourced from chunks dropped by the limitation cap
|
||||
if (
|
||||
source_id
|
||||
and source_id not in allowed_source_ids
|
||||
and source_id not in existing_full_source_ids
|
||||
):
|
||||
continue
|
||||
filtered_nodes.append(dp)
|
||||
nodes_data = filtered_nodes
|
||||
else:
|
||||
# In FIFO mode, keep all node descriptions - truncation happens at source_ids level only
|
||||
nodes_data = list(nodes_data)
|
||||
|
||||
skip_summary_due_to_limit = (
|
||||
limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
and len(existing_full_source_ids) >= max_source_limit
|
||||
and not nodes_data
|
||||
and already_description
|
||||
)
|
||||
|
||||
# Deduplicate by description, keeping first occurrence
|
||||
unique_nodes = {}
|
||||
for dp in nodes_data:
|
||||
desc = dp["description"]
|
||||
desc = dp.get("description")
|
||||
if not desc:
|
||||
continue
|
||||
if desc not in unique_nodes:
|
||||
unique_nodes[desc] = dp
|
||||
|
||||
|
|
@ -1332,17 +1577,31 @@ async def _merge_nodes_then_upsert(
|
|||
)
|
||||
sorted_descriptions = [dp["description"] for dp in sorted_nodes]
|
||||
|
||||
truncation_info = ""
|
||||
dd_message = ""
|
||||
|
||||
# Combine already_description with sorted new sorted descriptions
|
||||
description_list = already_description + sorted_descriptions
|
||||
deduplicated_num = original_nodes_count - len(sorted_descriptions)
|
||||
if deduplicated_num > 0:
|
||||
dd_message = f"dd:{deduplicated_num}"
|
||||
|
||||
num_fragment = len(description_list)
|
||||
already_fragment = len(already_description)
|
||||
deduplicated_num = already_fragment + len(nodes_data) - num_fragment
|
||||
if deduplicated_num > 0:
|
||||
dd_message = f"(dd:{deduplicated_num})"
|
||||
else:
|
||||
dd_message = ""
|
||||
if num_fragment > 0:
|
||||
if skip_summary_due_to_limit:
|
||||
description = (
|
||||
already_node.get("description", "(no description)")
|
||||
if already_node
|
||||
else "(no description)"
|
||||
)
|
||||
llm_was_used = False
|
||||
status_message = f"Skip merge for `{entity_name}`: IGNORE_NEW limit reached"
|
||||
logger.debug(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
elif num_fragment > 0:
|
||||
# Get summary and LLM usage status
|
||||
description, llm_was_used = await _handle_entity_relation_summary(
|
||||
"Entity",
|
||||
|
|
@ -1355,9 +1614,16 @@ async def _merge_nodes_then_upsert(
|
|||
|
||||
# Log based on actual LLM usage
|
||||
if llm_was_used:
|
||||
status_message = f"LLMmrg: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}{dd_message}"
|
||||
status_message = f"LLMmrg: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
|
||||
else:
|
||||
status_message = f"Merged: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}{dd_message}"
|
||||
status_message = f"Merged: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
|
||||
|
||||
# Add truncation info from apply_source_ids_limit if truncation occurred
|
||||
if len(source_ids) < len(full_source_ids):
|
||||
truncation_info = f"{limit_method}:{len(source_ids)}/{len(full_source_ids)}"
|
||||
|
||||
if dd_message or truncation_info:
|
||||
status_message += f" ({', '.join([truncation_info, dd_message])})"
|
||||
|
||||
if already_fragment > 0 or llm_was_used:
|
||||
logger.info(status_message)
|
||||
|
|
@ -1372,12 +1638,67 @@ async def _merge_nodes_then_upsert(
|
|||
logger.error(f"Entity {entity_name} has no description")
|
||||
description = "(no description)"
|
||||
|
||||
merged_source_ids: set = set([dp["source_id"] for dp in nodes_data] + already_source_ids)
|
||||
|
||||
source_ids = truncate_entity_source_id(merged_source_ids, entity_name, global_config)
|
||||
source_id = GRAPH_FIELD_SEP.join(source_ids)
|
||||
|
||||
file_path = build_file_path(already_file_paths, nodes_data, entity_name)
|
||||
# Build file_path with count limit
|
||||
if skip_summary_due_to_limit:
|
||||
# Skip limit, keep original file_path
|
||||
file_path = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp)
|
||||
else:
|
||||
# Collect and apply limit
|
||||
file_paths_list = []
|
||||
seen_paths = set()
|
||||
|
||||
# Get placeholder to filter it out
|
||||
file_path_placeholder = global_config.get(
|
||||
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
|
||||
)
|
||||
|
||||
# Collect from already_file_paths, excluding placeholder
|
||||
for fp in already_file_paths:
|
||||
# Skip placeholders (format: "...{placeholder}(showing X of Y)...")
|
||||
if (
|
||||
fp
|
||||
and not fp.startswith(f"...{file_path_placeholder}")
|
||||
and fp not in seen_paths
|
||||
):
|
||||
file_paths_list.append(fp)
|
||||
seen_paths.add(fp)
|
||||
|
||||
# Collect from new data
|
||||
for dp in nodes_data:
|
||||
file_path_item = dp.get("file_path")
|
||||
if file_path_item and file_path_item not in seen_paths:
|
||||
file_paths_list.append(file_path_item)
|
||||
seen_paths.add(file_path_item)
|
||||
|
||||
# Apply count limit
|
||||
max_file_paths = global_config.get("max_file_paths")
|
||||
|
||||
if len(file_paths_list) > max_file_paths:
|
||||
limit_method = global_config.get(
|
||||
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
)
|
||||
file_path_placeholder = global_config.get(
|
||||
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
|
||||
)
|
||||
original_count = len(file_paths_list)
|
||||
|
||||
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
|
||||
# FIFO: keep tail (newest), discard head
|
||||
file_paths_list = file_paths_list[-max_file_paths:]
|
||||
else:
|
||||
# KEEP: keep head (earliest), discard tail
|
||||
file_paths_list = file_paths_list[:max_file_paths]
|
||||
|
||||
file_paths_list.append(
|
||||
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
|
||||
)
|
||||
logger.info(
|
||||
f"Limited `{entity_name}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
|
||||
)
|
||||
|
||||
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
|
||||
|
||||
node_data = dict(
|
||||
entity_id=entity_name,
|
||||
|
|
@ -1386,6 +1707,7 @@ async def _merge_nodes_then_upsert(
|
|||
source_id=source_id,
|
||||
file_path=file_path,
|
||||
created_at=int(time.time()),
|
||||
truncate=truncation_info,
|
||||
)
|
||||
await knowledge_graph_inst.upsert_node(
|
||||
entity_name,
|
||||
|
|
@ -1405,6 +1727,7 @@ async def _merge_edges_then_upsert(
|
|||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
added_entities: list = None, # New parameter to track entities added during edge processing
|
||||
relation_chunks_storage: BaseKVStorage | None = None,
|
||||
):
|
||||
if src_id == tgt_id:
|
||||
return None
|
||||
|
|
@ -1448,16 +1771,85 @@ async def _merge_edges_then_upsert(
|
|||
)
|
||||
)
|
||||
|
||||
original_edges_count = len(edges_data)
|
||||
|
||||
new_source_ids = [dp["source_id"] for dp in edges_data if dp.get("source_id")]
|
||||
|
||||
storage_key = make_relation_chunk_key(src_id, tgt_id)
|
||||
existing_full_source_ids = []
|
||||
if relation_chunks_storage is not None:
|
||||
stored_chunks = await relation_chunks_storage.get_by_id(storage_key)
|
||||
if stored_chunks and isinstance(stored_chunks, dict):
|
||||
existing_full_source_ids = [
|
||||
chunk_id for chunk_id in stored_chunks.get("chunk_ids", []) if chunk_id
|
||||
]
|
||||
|
||||
if not existing_full_source_ids:
|
||||
existing_full_source_ids = [
|
||||
chunk_id for chunk_id in already_source_ids if chunk_id
|
||||
]
|
||||
|
||||
full_source_ids = merge_source_ids(existing_full_source_ids, new_source_ids)
|
||||
|
||||
if relation_chunks_storage is not None and full_source_ids:
|
||||
await relation_chunks_storage.upsert(
|
||||
{
|
||||
storage_key: {
|
||||
"chunk_ids": full_source_ids,
|
||||
"count": len(full_source_ids),
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
limit_method = global_config.get("source_ids_limit_method")
|
||||
max_source_limit = global_config.get("max_source_ids_per_relation")
|
||||
source_ids = apply_source_ids_limit(
|
||||
full_source_ids,
|
||||
max_source_limit,
|
||||
limit_method,
|
||||
identifier=f"`{src_id}`~`{tgt_id}`",
|
||||
)
|
||||
limit_method = (
|
||||
global_config.get("source_ids_limit_method") or SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
)
|
||||
|
||||
# Only apply filtering in IGNORE_NEW mode
|
||||
if limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP:
|
||||
allowed_source_ids = set(source_ids)
|
||||
filtered_edges = []
|
||||
for dp in edges_data:
|
||||
source_id = dp.get("source_id")
|
||||
# Skip relationship fragments sourced from chunks dropped by the IGNORE_NEW cap
|
||||
if (
|
||||
source_id
|
||||
and source_id not in allowed_source_ids
|
||||
and source_id not in existing_full_source_ids
|
||||
):
|
||||
continue
|
||||
filtered_edges.append(dp)
|
||||
edges_data = filtered_edges
|
||||
else:
|
||||
# In FIFO mode, keep all edge descriptions - truncation happens at source_ids level only
|
||||
edges_data = list(edges_data)
|
||||
|
||||
skip_summary_due_to_limit = (
|
||||
limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
and len(existing_full_source_ids) >= max_source_limit
|
||||
and not edges_data
|
||||
and already_description
|
||||
)
|
||||
|
||||
# Process edges_data with None checks
|
||||
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
|
||||
|
||||
# Deduplicate by description, keeping first occurrence
|
||||
unique_edges = {}
|
||||
for dp in edges_data:
|
||||
if dp.get("description"):
|
||||
desc = dp["description"]
|
||||
if desc not in unique_edges:
|
||||
unique_edges[desc] = dp
|
||||
description_value = dp.get("description")
|
||||
if not description_value:
|
||||
continue
|
||||
if description_value not in unique_edges:
|
||||
unique_edges[description_value] = dp
|
||||
|
||||
# Sort description by timestamp, then by description length (largest to smallest) when timestamps are the same
|
||||
sorted_edges = sorted(
|
||||
|
|
@ -1466,17 +1858,34 @@ async def _merge_edges_then_upsert(
|
|||
)
|
||||
sorted_descriptions = [dp["description"] for dp in sorted_edges]
|
||||
|
||||
truncation_info = ""
|
||||
dd_message = ""
|
||||
|
||||
# Combine already_description with sorted new descriptions
|
||||
description_list = already_description + sorted_descriptions
|
||||
deduplicated_num = original_edges_count - len(sorted_descriptions)
|
||||
if deduplicated_num > 0:
|
||||
dd_message = f"dd:{deduplicated_num}"
|
||||
|
||||
num_fragment = len(description_list)
|
||||
already_fragment = len(already_description)
|
||||
deduplicated_num = already_fragment + len(edges_data) - num_fragment
|
||||
if deduplicated_num > 0:
|
||||
dd_message = f"(dd:{deduplicated_num})"
|
||||
else:
|
||||
dd_message = ""
|
||||
if num_fragment > 0:
|
||||
|
||||
if skip_summary_due_to_limit:
|
||||
description = (
|
||||
already_edge.get("description", "(no description)")
|
||||
if already_edge
|
||||
else "(no description)"
|
||||
)
|
||||
llm_was_used = False
|
||||
status_message = (
|
||||
f"Skip merge for `{src_id}`~`{tgt_id}`: IGNORE_NEW limit reached"
|
||||
)
|
||||
logger.debug(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
elif num_fragment > 0:
|
||||
# Get summary and LLM usage status
|
||||
description, llm_was_used = await _handle_entity_relation_summary(
|
||||
"Relation",
|
||||
|
|
@ -1489,9 +1898,16 @@ async def _merge_edges_then_upsert(
|
|||
|
||||
# Log based on actual LLM usage
|
||||
if llm_was_used:
|
||||
status_message = f"LLMmrg: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}{dd_message}"
|
||||
status_message = f"LLMmrg: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
|
||||
else:
|
||||
status_message = f"Merged: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}{dd_message}"
|
||||
status_message = f"Merged: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
|
||||
|
||||
# Add truncation info from apply_source_ids_limit if truncation occurred
|
||||
if len(source_ids) < len(full_source_ids):
|
||||
truncation_info = f"{limit_method}:{len(source_ids)}/{len(full_source_ids)}"
|
||||
|
||||
if dd_message or truncation_info:
|
||||
status_message += f" ({', '.join([truncation_info, dd_message])})"
|
||||
|
||||
if already_fragment > 0 or llm_was_used:
|
||||
logger.info(status_message)
|
||||
|
|
@ -1521,13 +1937,67 @@ async def _merge_edges_then_upsert(
|
|||
# Join all unique keywords with commas
|
||||
keywords = ",".join(sorted(all_keywords))
|
||||
|
||||
source_id = GRAPH_FIELD_SEP.join(
|
||||
set(
|
||||
[dp["source_id"] for dp in edges_data if dp.get("source_id")]
|
||||
+ already_source_ids
|
||||
source_id = GRAPH_FIELD_SEP.join(source_ids)
|
||||
|
||||
# Build file_path with count limit
|
||||
if skip_summary_due_to_limit:
|
||||
# Skip limit, keep original file_path
|
||||
file_path = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp)
|
||||
else:
|
||||
# Collect and apply limit
|
||||
file_paths_list = []
|
||||
seen_paths = set()
|
||||
|
||||
# Get placeholder to filter it out
|
||||
file_path_placeholder = global_config.get(
|
||||
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
|
||||
)
|
||||
)
|
||||
file_path = build_file_path(already_file_paths, edges_data, f"{src_id}-{tgt_id}")
|
||||
|
||||
# Collect from already_file_paths, excluding placeholder
|
||||
for fp in already_file_paths:
|
||||
# Skip placeholders (format: "...{placeholder}(showing X of Y)...")
|
||||
if (
|
||||
fp
|
||||
and not fp.startswith(f"...{file_path_placeholder}")
|
||||
and fp not in seen_paths
|
||||
):
|
||||
file_paths_list.append(fp)
|
||||
seen_paths.add(fp)
|
||||
|
||||
# Collect from new data
|
||||
for dp in edges_data:
|
||||
file_path_item = dp.get("file_path")
|
||||
if file_path_item and file_path_item not in seen_paths:
|
||||
file_paths_list.append(file_path_item)
|
||||
seen_paths.add(file_path_item)
|
||||
|
||||
# Apply count limit
|
||||
max_file_paths = global_config.get("max_file_paths")
|
||||
|
||||
if len(file_paths_list) > max_file_paths:
|
||||
limit_method = global_config.get(
|
||||
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
|
||||
)
|
||||
file_path_placeholder = global_config.get(
|
||||
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
|
||||
)
|
||||
original_count = len(file_paths_list)
|
||||
|
||||
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
|
||||
# FIFO: keep tail (newest), discard head
|
||||
file_paths_list = file_paths_list[-max_file_paths:]
|
||||
else:
|
||||
# KEEP: keep head (earliest), discard tail
|
||||
file_paths_list = file_paths_list[:max_file_paths]
|
||||
|
||||
file_paths_list.append(
|
||||
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
|
||||
)
|
||||
logger.info(
|
||||
f"Limited `{src_id}`~`{tgt_id}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
|
||||
)
|
||||
|
||||
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
|
||||
|
||||
for need_insert_id in [src_id, tgt_id]:
|
||||
if not (await knowledge_graph_inst.has_node(need_insert_id)):
|
||||
|
|
@ -1538,6 +2008,7 @@ async def _merge_edges_then_upsert(
|
|||
"entity_type": "UNKNOWN",
|
||||
"file_path": file_path,
|
||||
"created_at": int(time.time()),
|
||||
"truncate": "",
|
||||
}
|
||||
await knowledge_graph_inst.upsert_node(need_insert_id, node_data=node_data)
|
||||
|
||||
|
|
@ -1563,6 +2034,7 @@ async def _merge_edges_then_upsert(
|
|||
source_id=source_id,
|
||||
file_path=file_path,
|
||||
created_at=int(time.time()),
|
||||
truncate=truncation_info,
|
||||
),
|
||||
)
|
||||
|
||||
|
|
@ -1574,6 +2046,7 @@ async def _merge_edges_then_upsert(
|
|||
source_id=source_id,
|
||||
file_path=file_path,
|
||||
created_at=int(time.time()),
|
||||
truncate=truncation_info,
|
||||
)
|
||||
|
||||
return edge_data
|
||||
|
|
@ -1591,6 +2064,8 @@ async def merge_nodes_and_edges(
|
|||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
entity_chunks_storage: BaseKVStorage | None = None,
|
||||
relation_chunks_storage: BaseKVStorage | None = None,
|
||||
current_file_number: int = 0,
|
||||
total_files: int = 0,
|
||||
file_path: str = "unknown_source",
|
||||
|
|
@ -1614,6 +2089,8 @@ async def merge_nodes_and_edges(
|
|||
pipeline_status: Pipeline status dictionary
|
||||
pipeline_status_lock: Lock for pipeline status
|
||||
llm_response_cache: LLM response cache
|
||||
entity_chunks_storage: Storage tracking full chunk lists per entity
|
||||
relation_chunks_storage: Storage tracking full chunk lists per relation
|
||||
current_file_number: Current file number for logging
|
||||
total_files: Total files for logging
|
||||
file_path: File path for logging
|
||||
|
|
@ -1671,13 +2148,14 @@ async def merge_nodes_and_edges(
|
|||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
entity_chunks_storage,
|
||||
)
|
||||
|
||||
# Vector database operation (equally critical, must succeed)
|
||||
if entity_vdb is not None and entity_data:
|
||||
data_for_vdb = {
|
||||
compute_mdhash_id(
|
||||
entity_data["entity_name"], prefix="ent-"
|
||||
str(entity_data["entity_name"]), prefix="ent-"
|
||||
): {
|
||||
"entity_name": entity_data["entity_name"],
|
||||
"entity_type": entity_data["entity_type"],
|
||||
|
|
@ -1689,7 +2167,6 @@ async def merge_nodes_and_edges(
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
logger.debug(f"Inserting {entity_name} in Graph")
|
||||
# Use safe operation wrapper - VDB failure must throw exception
|
||||
await safe_vdb_operation_with_exception(
|
||||
|
|
@ -1804,6 +2281,7 @@ async def merge_nodes_and_edges(
|
|||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
added_entities, # Pass list to collect added entities
|
||||
relation_chunks_storage,
|
||||
)
|
||||
|
||||
if edge_data is None:
|
||||
|
|
@ -3338,7 +3816,11 @@ async def _build_query_context(
|
|||
query_embedding=search_result["query_embedding"],
|
||||
)
|
||||
|
||||
if not merged_chunks:
|
||||
if (
|
||||
not merged_chunks
|
||||
and not truncation_result["entities_context"]
|
||||
and not truncation_result["relations_context"]
|
||||
):
|
||||
return None
|
||||
|
||||
# Stage 4: Build final LLM context with dynamic token processing
|
||||
|
|
|
|||
|
|
@ -15,7 +15,17 @@ from dataclasses import dataclass
|
|||
from datetime import datetime
|
||||
from functools import wraps
|
||||
from hashlib import md5
|
||||
from typing import Any, Protocol, Callable, TYPE_CHECKING, List, Optional
|
||||
from typing import (
|
||||
Any,
|
||||
Protocol,
|
||||
Callable,
|
||||
TYPE_CHECKING,
|
||||
List,
|
||||
Optional,
|
||||
Iterable,
|
||||
Sequence,
|
||||
Collection,
|
||||
)
|
||||
import numpy as np
|
||||
from dotenv import load_dotenv
|
||||
|
||||
|
|
@ -25,7 +35,9 @@ from lightrag.constants import (
|
|||
DEFAULT_LOG_FILENAME,
|
||||
GRAPH_FIELD_SEP,
|
||||
DEFAULT_MAX_TOTAL_TOKENS,
|
||||
DEFAULT_MAX_FILE_PATH_LENGTH,
|
||||
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
|
||||
VALID_SOURCE_IDS_LIMIT_METHODS,
|
||||
SOURCE_IDS_LIMIT_METHOD_FIFO,
|
||||
)
|
||||
|
||||
# Initialize logger with basic configuration
|
||||
|
|
@ -2464,82 +2476,111 @@ async def process_chunks_unified(
|
|||
|
||||
return final_chunks
|
||||
|
||||
def truncate_entity_source_id(chunk_ids: set, entity_name: str, global_config: dict) -> set:
|
||||
"""Limit chunk_ids, for entities that appear a HUGE no of times (To not break VDB hard upper limits)"""
|
||||
already_len: int = len(chunk_ids)
|
||||
|
||||
max_chunk_ids_per_entity = global_config["max_source_ids_per_entity"]
|
||||
def normalize_source_ids_limit_method(method: str | None) -> str:
|
||||
"""Normalize the source ID limiting strategy and fall back to default when invalid."""
|
||||
|
||||
if already_len <= max_chunk_ids_per_entity:
|
||||
return chunk_ids
|
||||
if not method:
|
||||
return DEFAULT_SOURCE_IDS_LIMIT_METHOD
|
||||
|
||||
logger.warning(
|
||||
f"Source Ids already exceeds {max_chunk_ids_per_entity } for {entity_name}, "
|
||||
f"current size: {already_len}, truncating..."
|
||||
)
|
||||
|
||||
truncated_chunk_ids = set(list(chunk_ids)[0:max_chunk_ids_per_entity ])
|
||||
return truncated_chunk_ids
|
||||
|
||||
|
||||
|
||||
def build_file_path(already_file_paths, data_list, target):
|
||||
"""Build file path string with UTF-8 byte length limit and deduplication
|
||||
|
||||
Args:
|
||||
already_file_paths: List of existing file paths
|
||||
data_list: List of data items containing file_path
|
||||
target: Target name for logging warnings
|
||||
|
||||
Returns:
|
||||
str: Combined file paths separated by GRAPH_FIELD_SEP
|
||||
"""
|
||||
# set: deduplication
|
||||
file_paths_set = {fp for fp in already_file_paths if fp}
|
||||
|
||||
# string: filter empty value and keep file order in already_file_paths
|
||||
file_paths = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp)
|
||||
|
||||
# Check if initial file_paths already exceeds byte length limit
|
||||
if len(file_paths.encode("utf-8")) >= DEFAULT_MAX_FILE_PATH_LENGTH:
|
||||
normalized = method.upper()
|
||||
if normalized not in VALID_SOURCE_IDS_LIMIT_METHODS:
|
||||
logger.warning(
|
||||
f"Initial file_paths already exceeds {DEFAULT_MAX_FILE_PATH_LENGTH} bytes for {target}, "
|
||||
f"current size: {len(file_paths.encode('utf-8'))} bytes"
|
||||
"Unknown SOURCE_IDS_LIMIT_METHOD '%s', falling back to %s",
|
||||
method,
|
||||
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
|
||||
)
|
||||
return DEFAULT_SOURCE_IDS_LIMIT_METHOD
|
||||
|
||||
return normalized
|
||||
|
||||
|
||||
def merge_source_ids(
|
||||
existing_ids: Iterable[str] | None, new_ids: Iterable[str] | None
|
||||
) -> list[str]:
|
||||
"""Merge two iterables of source IDs while preserving order and removing duplicates."""
|
||||
|
||||
merged: list[str] = []
|
||||
seen: set[str] = set()
|
||||
|
||||
for sequence in (existing_ids, new_ids):
|
||||
if not sequence:
|
||||
continue
|
||||
for source_id in sequence:
|
||||
if not source_id:
|
||||
continue
|
||||
if source_id not in seen:
|
||||
seen.add(source_id)
|
||||
merged.append(source_id)
|
||||
|
||||
return merged
|
||||
|
||||
|
||||
def apply_source_ids_limit(
|
||||
source_ids: Sequence[str],
|
||||
limit: int,
|
||||
method: str,
|
||||
*,
|
||||
identifier: str | None = None,
|
||||
) -> list[str]:
|
||||
"""Apply a limit strategy to a sequence of source IDs."""
|
||||
|
||||
if limit <= 0:
|
||||
return []
|
||||
|
||||
source_ids_list = list(source_ids)
|
||||
if len(source_ids_list) <= limit:
|
||||
return source_ids_list
|
||||
|
||||
normalized_method = normalize_source_ids_limit_method(method)
|
||||
|
||||
if normalized_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
|
||||
truncated = source_ids_list[-limit:]
|
||||
else: # IGNORE_NEW
|
||||
truncated = source_ids_list[:limit]
|
||||
|
||||
if identifier and len(truncated) < len(source_ids_list):
|
||||
logger.debug(
|
||||
"Source_id truncated: %s | %s keeping %s of %s entries",
|
||||
identifier,
|
||||
normalized_method,
|
||||
len(truncated),
|
||||
len(source_ids_list),
|
||||
)
|
||||
|
||||
# ignored file_paths
|
||||
file_paths_ignore = ""
|
||||
# add file_paths
|
||||
for dp in data_list:
|
||||
cur_file_path = dp.get("file_path")
|
||||
# empty
|
||||
if not cur_file_path:
|
||||
continue
|
||||
return truncated
|
||||
|
||||
# skip duplicate item
|
||||
if cur_file_path in file_paths_set:
|
||||
continue
|
||||
# add
|
||||
file_paths_set.add(cur_file_path)
|
||||
|
||||
# check the UTF-8 byte length
|
||||
new_addition = GRAPH_FIELD_SEP + cur_file_path if file_paths else cur_file_path
|
||||
if (
|
||||
len(file_paths.encode("utf-8")) + len(new_addition.encode("utf-8"))
|
||||
< DEFAULT_MAX_FILE_PATH_LENGTH - 5
|
||||
):
|
||||
# append
|
||||
file_paths += new_addition
|
||||
else:
|
||||
# ignore
|
||||
file_paths_ignore += GRAPH_FIELD_SEP + cur_file_path
|
||||
def subtract_source_ids(
|
||||
source_ids: Iterable[str],
|
||||
ids_to_remove: Collection[str],
|
||||
) -> list[str]:
|
||||
"""Remove a collection of IDs from an ordered iterable while preserving order."""
|
||||
|
||||
if file_paths_ignore:
|
||||
logger.warning(
|
||||
f"File paths exceed {DEFAULT_MAX_FILE_PATH_LENGTH} bytes for {target}, "
|
||||
f"ignoring file path: {file_paths_ignore}"
|
||||
)
|
||||
return file_paths
|
||||
removal_set = set(ids_to_remove)
|
||||
if not removal_set:
|
||||
return [source_id for source_id in source_ids if source_id]
|
||||
|
||||
return [
|
||||
source_id
|
||||
for source_id in source_ids
|
||||
if source_id and source_id not in removal_set
|
||||
]
|
||||
|
||||
|
||||
def make_relation_chunk_key(src: str, tgt: str) -> str:
|
||||
"""Create a deterministic storage key for relation chunk tracking."""
|
||||
|
||||
return GRAPH_FIELD_SEP.join(sorted((src, tgt)))
|
||||
|
||||
|
||||
def parse_relation_chunk_key(key: str) -> tuple[str, str]:
|
||||
"""Parse a relation chunk storage key back into its entity pair."""
|
||||
|
||||
parts = key.split(GRAPH_FIELD_SEP)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid relation chunk key: {key}")
|
||||
return parts[0], parts[1]
|
||||
|
||||
|
||||
def generate_track_id(prefix: str = "upload") -> str:
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue