Improve Azure OpenAI wrapper functions with full parameter support

• Add missing parameters to wrappers
• Update docstrings for clarity
• Ensure API consistency
• Fix parameter forwarding
• Maintain backward compatibility
This commit is contained in:
yangdx 2025-11-21 19:24:32 +08:00
parent 45f4f82392
commit ac9f2574a5

View file

@ -205,23 +205,33 @@ async def openai_complete_if_cache(
6. For non-streaming: COT content is prepended to regular content with <think> tags. 6. For non-streaming: COT content is prepended to regular content with <think> tags.
Args: Args:
model: The OpenAI model to use. model: The OpenAI model to use. For Azure, this can be the deployment name.
prompt: The prompt to complete. prompt: The prompt to complete.
system_prompt: Optional system prompt to include. system_prompt: Optional system prompt to include.
history_messages: Optional list of previous messages in the conversation. history_messages: Optional list of previous messages in the conversation.
base_url: Optional base URL for the OpenAI API.
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
token_tracker: Optional token usage tracker for monitoring API usage.
enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False. enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False.
base_url: Optional base URL for the OpenAI API. For Azure, this should be the
Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com/).
api_key: Optional API key. For standard OpenAI, uses OPENAI_API_KEY environment
variable if None. For Azure, uses AZURE_OPENAI_API_KEY if None.
token_tracker: Optional token usage tracker for monitoring API usage.
stream: Whether to stream the response. Default is False. stream: Whether to stream the response. Default is False.
timeout: Request timeout in seconds. Default is None. timeout: Request timeout in seconds. Default is None.
keyword_extraction: Whether to enable keyword extraction mode. When True, triggers keyword_extraction: Whether to enable keyword extraction mode. When True, triggers
special response formatting for keyword extraction. Default is False. special response formatting for keyword extraction. Default is False.
use_azure: Whether to use Azure OpenAI service instead of standard OpenAI.
When True, creates an AsyncAzureOpenAI client. Default is False.
azure_deployment: Azure OpenAI deployment name. Only used when use_azure=True.
If not specified, falls back to AZURE_OPENAI_DEPLOYMENT environment variable.
api_version: Azure OpenAI API version (e.g., "2024-02-15-preview"). Only used
when use_azure=True. If not specified, falls back to AZURE_OPENAI_API_VERSION
environment variable.
**kwargs: Additional keyword arguments to pass to the OpenAI API. **kwargs: Additional keyword arguments to pass to the OpenAI API.
Special kwargs: Special kwargs:
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client. - openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
These will be passed to the client constructor but will be overridden by These will be passed to the client constructor but will be overridden by
explicit parameters (api_key, base_url). explicit parameters (api_key, base_url). Supports proxy configuration,
custom headers, retry policies, etc.
Returns: Returns:
The completed text (with integrated COT content if available) or an async iterator The completed text (with integrated COT content if available) or an async iterator
@ -684,21 +694,34 @@ async def openai_embed(
) -> np.ndarray: ) -> np.ndarray:
"""Generate embeddings for a list of texts using OpenAI's API. """Generate embeddings for a list of texts using OpenAI's API.
This function supports both standard OpenAI and Azure OpenAI services.
Args: Args:
texts: List of texts to embed. texts: List of texts to embed.
model: The OpenAI embedding model to use. model: The embedding model to use. For standard OpenAI (e.g., "text-embedding-3-small").
base_url: Optional base URL for the OpenAI API. For Azure, this can be the deployment name.
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable. base_url: Optional base URL for the API. For standard OpenAI, uses default OpenAI endpoint.
For Azure, this should be the Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com/).
api_key: Optional API key. For standard OpenAI, uses OPENAI_API_KEY environment variable if None.
For Azure, uses AZURE_EMBEDDING_API_KEY environment variable if None.
embedding_dim: Optional embedding dimension for dynamic dimension reduction. embedding_dim: Optional embedding dimension for dynamic dimension reduction.
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper. **IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
Do NOT manually pass this parameter when calling the function directly. Do NOT manually pass this parameter when calling the function directly.
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator. The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
Manually passing a different value will trigger a warning and be ignored. Manually passing a different value will trigger a warning and be ignored.
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction. When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
client_configs: Additional configuration options for the AsyncOpenAI client. client_configs: Additional configuration options for the AsyncOpenAI/AsyncAzureOpenAI client.
These will override any default configurations but will be overridden by These will override any default configurations but will be overridden by
explicit parameters (api_key, base_url). explicit parameters (api_key, base_url). Supports proxy configuration,
custom headers, retry policies, etc.
token_tracker: Optional token usage tracker for monitoring API usage. token_tracker: Optional token usage tracker for monitoring API usage.
use_azure: Whether to use Azure OpenAI service instead of standard OpenAI.
When True, creates an AsyncAzureOpenAI client. Default is False.
azure_deployment: Azure OpenAI deployment name. Only used when use_azure=True.
If not specified, falls back to AZURE_EMBEDDING_DEPLOYMENT environment variable.
api_version: Azure OpenAI API version (e.g., "2024-02-15-preview"). Only used
when use_azure=True. If not specified, falls back to AZURE_EMBEDDING_API_VERSION
environment variable.
Returns: Returns:
A numpy array of embeddings, one per input text. A numpy array of embeddings, one per input text.
@ -759,6 +782,9 @@ async def azure_openai_complete_if_cache(
enable_cot: bool = False, enable_cot: bool = False,
base_url: str | None = None, base_url: str | None = None,
api_key: str | None = None, api_key: str | None = None,
token_tracker: Any | None = None,
stream: bool | None = None,
timeout: int | None = None,
api_version: str | None = None, api_version: str | None = None,
keyword_extraction: bool = False, keyword_extraction: bool = False,
**kwargs, **kwargs,
@ -767,6 +793,9 @@ async def azure_openai_complete_if_cache(
This function provides backward compatibility by wrapping the unified This function provides backward compatibility by wrapping the unified
openai_complete_if_cache implementation with Azure-specific parameter handling. openai_complete_if_cache implementation with Azure-specific parameter handling.
All parameters from the underlying openai_complete_if_cache are exposed to ensure
full feature parity and API consistency.
""" """
# Handle Azure-specific environment variables and parameters # Handle Azure-specific environment variables and parameters
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL") deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
@ -782,9 +811,6 @@ async def azure_openai_complete_if_cache(
or os.getenv("OPENAI_API_VERSION") or os.getenv("OPENAI_API_VERSION")
) )
# Pop timeout from kwargs if present (will be handled by openai_complete_if_cache)
timeout = kwargs.pop("timeout", None)
# Call the unified implementation with Azure-specific parameters # Call the unified implementation with Azure-specific parameters
return await openai_complete_if_cache( return await openai_complete_if_cache(
model=model, model=model,
@ -794,6 +820,8 @@ async def azure_openai_complete_if_cache(
enable_cot=enable_cot, enable_cot=enable_cot,
base_url=base_url, base_url=base_url,
api_key=api_key, api_key=api_key,
token_tracker=token_tracker,
stream=stream,
timeout=timeout, timeout=timeout,
use_azure=True, use_azure=True,
azure_deployment=deployment, azure_deployment=deployment,
@ -833,6 +861,8 @@ async def azure_openai_embed(
model: str | None = None, model: str | None = None,
base_url: str | None = None, base_url: str | None = None,
api_key: str | None = None, api_key: str | None = None,
token_tracker: Any | None = None,
client_configs: dict[str, Any] | None = None,
api_version: str | None = None, api_version: str | None = None,
) -> np.ndarray: ) -> np.ndarray:
"""Azure OpenAI embedding wrapper function. """Azure OpenAI embedding wrapper function.
@ -840,6 +870,9 @@ async def azure_openai_embed(
This function provides backward compatibility by wrapping the unified This function provides backward compatibility by wrapping the unified
openai_embed implementation with Azure-specific parameter handling. openai_embed implementation with Azure-specific parameter handling.
All parameters from the underlying openai_embed are exposed to ensure
full feature parity and API consistency.
IMPORTANT - Decorator Usage: IMPORTANT - Decorator Usage:
1. This function is decorated with @wrap_embedding_func_with_attrs to provide 1. This function is decorated with @wrap_embedding_func_with_attrs to provide
@ -898,6 +931,8 @@ async def azure_openai_embed(
model=model or deployment, model=model or deployment,
base_url=base_url, base_url=base_url,
api_key=api_key, api_key=api_key,
token_tracker=token_tracker,
client_configs=client_configs,
use_azure=True, use_azure=True,
azure_deployment=deployment, azure_deployment=deployment,
api_version=api_version, api_version=api_version,