This commit is contained in:
Raphaël MANSUY 2025-12-04 19:18:37 +08:00
parent 6a4300d0bf
commit ab6e8a9cf4

View file

@ -57,6 +57,7 @@ from lightrag.constants import (
SOURCE_IDS_LIMIT_METHOD_KEEP,
SOURCE_IDS_LIMIT_METHOD_FIFO,
DEFAULT_FILE_PATH_MORE_PLACEHOLDER,
DEFAULT_MAX_FILE_PATHS,
)
from lightrag.kg.shared_storage import get_storage_keyed_lock
import time
@ -1188,7 +1189,7 @@ async def _rebuild_single_entity(
file_paths_list = file_paths_list[:max_file_paths]
file_paths_list.append(
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
f"...{file_path_placeholder}({limit_method}:{max_file_paths}/{original_count})..."
)
logger.info(
f"Limited `{entity_name}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
@ -1347,7 +1348,7 @@ async def _rebuild_single_relationship(
file_paths_list = file_paths_list[:max_file_paths]
file_paths_list.append(
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
f"...{file_path_placeholder}({limit_method}:{max_file_paths}/{original_count})..."
)
logger.info(
f"Limited `{src}`~`{tgt}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
@ -1470,6 +1471,7 @@ async def _merge_nodes_then_upsert(
entity_name: str,
nodes_data: list[dict],
knowledge_graph_inst: BaseGraphStorage,
entity_vdb: BaseVectorStorage | None,
global_config: dict,
pipeline_status: dict = None,
pipeline_status_lock=None,
@ -1482,6 +1484,7 @@ async def _merge_nodes_then_upsert(
already_description = []
already_file_paths = []
# 1. Get existing node data from knowledge graph
already_node = await knowledge_graph_inst.get_node(entity_name)
if already_node:
already_entity_types.append(already_node["entity_type"])
@ -1489,16 +1492,6 @@ async def _merge_nodes_then_upsert(
already_file_paths.extend(already_node["file_path"].split(GRAPH_FIELD_SEP))
already_description.extend(already_node["description"].split(GRAPH_FIELD_SEP))
entity_type = sorted(
Counter(
[dp["entity_type"] for dp in nodes_data] + already_entity_types
).items(),
key=lambda x: x[1],
reverse=True,
)[0][0] # Get the entity type with the highest count
original_nodes_count = len(nodes_data)
new_source_ids = [dp["source_id"] for dp in nodes_data if dp.get("source_id")]
existing_full_source_ids = []
@ -1514,6 +1507,7 @@ async def _merge_nodes_then_upsert(
chunk_id for chunk_id in already_source_ids if chunk_id
]
# 2. Merging new source ids with existing ones
full_source_ids = merge_source_ids(existing_full_source_ids, new_source_ids)
if entity_chunks_storage is not None and full_source_ids:
@ -1526,6 +1520,7 @@ async def _merge_nodes_then_upsert(
}
)
# 3. Finalize source_id by applying source ids limit
limit_method = global_config.get("source_ids_limit_method")
max_source_limit = global_config.get("max_source_ids_per_entity")
source_ids = apply_source_ids_limit(
@ -1535,7 +1530,7 @@ async def _merge_nodes_then_upsert(
identifier=f"`{entity_name}`",
)
# Only apply filtering in KEEP(ignore new) mode
# 4. Only keep nodes not filter by apply_source_ids_limit if limit_method is KEEP
if limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP:
allowed_source_ids = set(source_ids)
filtered_nodes = []
@ -1550,18 +1545,40 @@ async def _merge_nodes_then_upsert(
continue
filtered_nodes.append(dp)
nodes_data = filtered_nodes
else:
# In FIFO mode, keep all node descriptions - truncation happens at source_ids level only
else: # In FIFO mode, keep all nodes - truncation happens at source_ids level only
nodes_data = list(nodes_data)
skip_summary_due_to_limit = (
# 5. Check if we need to skip summary due to source_ids limit
if (
limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP
and len(existing_full_source_ids) >= max_source_limit
and not nodes_data
and already_description
)
):
if already_node:
logger.info(
f"Skipped `{entity_name}`: KEEP old chunks {already_source_ids}/{len(full_source_ids)}"
)
existing_node_data = dict(already_node)
return existing_node_data
else:
logger.error(f"Internal Error: already_node missing for `{entity_name}`")
raise ValueError(
f"Internal Error: already_node missing for `{entity_name}`"
)
# Deduplicate by description, keeping first occurrence
# 6.1 Finalize source_id
source_id = GRAPH_FIELD_SEP.join(source_ids)
# 6.2 Finalize entity type by highest count
entity_type = sorted(
Counter(
[dp["entity_type"] for dp in nodes_data] + already_entity_types
).items(),
key=lambda x: x[1],
reverse=True,
)[0][0]
# 7. Deduplicate nodes by description, keeping first occurrence in the same document
unique_nodes = {}
for dp in nodes_data:
desc = dp.get("description")
@ -1570,146 +1587,122 @@ async def _merge_nodes_then_upsert(
if desc not in unique_nodes:
unique_nodes[desc] = dp
# Sort description by timestamp, then by description length (largest to smallest) when timestamps are the same
# Sort description by timestamp, then by description length when timestamps are the same
sorted_nodes = sorted(
unique_nodes.values(),
key=lambda x: (x.get("timestamp", 0), -len(x.get("description", ""))),
)
sorted_descriptions = [dp["description"] for dp in sorted_nodes]
truncation_info = ""
dd_message = ""
has_placeholder = False # Initialize to track placeholder in file paths
# Combine already_description with sorted new sorted descriptions
description_list = already_description + sorted_descriptions
deduplicated_num = original_nodes_count - len(sorted_descriptions)
if deduplicated_num > 0:
dd_message = f"dd:{deduplicated_num}"
if not description_list:
logger.error(f"Entity {entity_name} has no description")
raise ValueError(f"Entity {entity_name} has no description")
# 8. Get summary description an LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Entity",
entity_name,
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
# 9. Build file_path within MAX_FILE_PATHS
file_paths_list = []
seen_paths = set()
has_placeholder = False # Indicating file_path has been truncated before
max_file_paths = global_config.get("max_file_paths", DEFAULT_MAX_FILE_PATHS)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
if fp and fp.startswith(f"...{file_path_placeholder}"): # Skip placeholders
has_placeholder = True
continue
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
# Collect from new data
for dp in nodes_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
# Apply count limit
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Add + sign to indicate actual file count is higher
original_count_str = (
f"{len(file_paths_list)}+" if has_placeholder else str(len(file_paths_list))
)
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
file_paths_list.append(f"...{file_path_placeholder}...(FIFO)")
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
file_paths_list.append(f"...{file_path_placeholder}...(KEEP Old)")
logger.info(
f"Limited `{entity_name}`: file_path {original_count_str} -> {max_file_paths} ({limit_method})"
)
# Finalize file_path
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
# 10.Log based on actual LLM usage
num_fragment = len(description_list)
already_fragment = len(already_description)
if skip_summary_due_to_limit:
description = (
already_node.get("description", "(no description)")
if already_node
else "(no description)"
if llm_was_used:
status_message = f"LLMmrg: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
truncation_info = truncation_info_log = ""
if len(source_ids) < len(full_source_ids):
# Add truncation info from apply_source_ids_limit if truncation occurred
truncation_info_log = f"{limit_method} {len(source_ids)}/{len(full_source_ids)}"
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
truncation_info = truncation_info_log
else:
truncation_info = "KEEP Old"
deduplicated_num = already_fragment + len(nodes_data) - num_fragment
dd_message = ""
if deduplicated_num > 0:
# Duplicated description detected across multiple trucks for the same entity
dd_message = f"dd {deduplicated_num}"
if dd_message or truncation_info_log:
status_message += (
f" ({', '.join(filter(None, [truncation_info_log, dd_message]))})"
)
llm_was_used = False
status_message = f"Skip merge for `{entity_name}`: IGNORE_NEW limit reached"
logger.debug(status_message)
# Add message to pipeline satus when merge happens
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
elif num_fragment > 0:
# Get summary and LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Entity",
entity_name,
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
# Log based on actual LLM usage
if llm_was_used:
status_message = f"LLMmrg: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{entity_name}` | {already_fragment}+{num_fragment - already_fragment}"
# Add truncation info from apply_source_ids_limit if truncation occurred
if len(source_ids) < len(full_source_ids):
# Add + sign if has_placeholder is True, indicating actual file count is higher
full_source_count_str = (
f"{len(full_source_ids)}+"
if has_placeholder
else str(len(full_source_ids))
)
truncation_info = (
f"{limit_method}:{len(source_ids)}/{full_source_count_str}"
)
if dd_message or truncation_info:
status_message += f" ({', '.join([truncation_info, dd_message])})"
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
else:
logger.debug(status_message)
else:
logger.error(f"Entity {entity_name} has no description")
description = "(no description)"
source_id = GRAPH_FIELD_SEP.join(source_ids)
# Build file_path with count limit
if skip_summary_due_to_limit:
# Skip limit, keep original file_path
file_path = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp)
else:
# Collect and apply limit
file_paths_list = []
seen_paths = set()
has_placeholder = False # Track if already_file_paths contains placeholder
# Get placeholder to filter it out
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
# Check if this is a placeholder record
if fp and fp.startswith(f"...{file_path_placeholder}"):
has_placeholder = True
continue
# Skip placeholders (format: "...{placeholder}(showing X of Y)...")
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
# Collect from new data
for dp in nodes_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
# Apply count limit
max_file_paths = global_config.get("max_file_paths")
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
original_count = len(file_paths_list)
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
file_paths_list.append(
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
)
logger.info(
f"Limited `{entity_name}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
)
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
logger.debug(status_message)
# 11. Update both graph and vector db
node_data = dict(
entity_id=entity_name,
entity_type=entity_type,
@ -1724,6 +1717,25 @@ async def _merge_nodes_then_upsert(
node_data=node_data,
)
node_data["entity_name"] = entity_name
if entity_vdb is not None:
entity_vdb_id = compute_mdhash_id(str(entity_name), prefix="ent-")
entity_content = f"{entity_name}\n{description}"
data_for_vdb = {
entity_vdb_id: {
"entity_name": entity_name,
"entity_type": entity_type,
"content": entity_content,
"source_id": source_id,
"file_path": file_path,
}
}
await safe_vdb_operation_with_exception(
operation=lambda payload=data_for_vdb: entity_vdb.upsert(payload),
operation_name="entity_upsert",
entity_name=entity_name,
max_retries=3,
retry_delay=0.1,
)
return node_data
@ -1732,6 +1744,8 @@ async def _merge_edges_then_upsert(
tgt_id: str,
edges_data: list[dict],
knowledge_graph_inst: BaseGraphStorage,
relationships_vdb: BaseVectorStorage | None,
entity_vdb: BaseVectorStorage | None,
global_config: dict,
pipeline_status: dict = None,
pipeline_status_lock=None,
@ -1742,12 +1756,14 @@ async def _merge_edges_then_upsert(
if src_id == tgt_id:
return None
already_edge = None
already_weights = []
already_source_ids = []
already_description = []
already_keywords = []
already_file_paths = []
# 1. Get existing edge data from graph storage
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
# Handle the case where get_edge returns None or missing fields
@ -1781,8 +1797,6 @@ async def _merge_edges_then_upsert(
)
)
original_edges_count = len(edges_data)
new_source_ids = [dp["source_id"] for dp in edges_data if dp.get("source_id")]
storage_key = make_relation_chunk_key(src_id, tgt_id)
@ -1799,6 +1813,7 @@ async def _merge_edges_then_upsert(
chunk_id for chunk_id in already_source_ids if chunk_id
]
# 2. Merge new source ids with existing ones
full_source_ids = merge_source_ids(existing_full_source_ids, new_source_ids)
if relation_chunks_storage is not None and full_source_ids:
@ -1811,6 +1826,7 @@ async def _merge_edges_then_upsert(
}
)
# 3. Finalize source_id by applying source ids limit
limit_method = global_config.get("source_ids_limit_method")
max_source_limit = global_config.get("max_source_ids_per_relation")
source_ids = apply_source_ids_limit(
@ -1823,13 +1839,13 @@ async def _merge_edges_then_upsert(
global_config.get("source_ids_limit_method") or SOURCE_IDS_LIMIT_METHOD_KEEP
)
# Only apply filtering in IGNORE_NEW mode
# 4. Only keep edges with source_id in the final source_ids list if in KEEP mode
if limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP:
allowed_source_ids = set(source_ids)
filtered_edges = []
for dp in edges_data:
source_id = dp.get("source_id")
# Skip relationship fragments sourced from chunks dropped by the IGNORE_NEW cap
# Skip relationship fragments sourced from chunks dropped by keep oldest cap
if (
source_id
and source_id not in allowed_source_ids
@ -1838,21 +1854,51 @@ async def _merge_edges_then_upsert(
continue
filtered_edges.append(dp)
edges_data = filtered_edges
else:
# In FIFO mode, keep all edge descriptions - truncation happens at source_ids level only
else: # In FIFO mode, keep all edges - truncation happens at source_ids level only
edges_data = list(edges_data)
skip_summary_due_to_limit = (
# 5. Check if we need to skip summary due to source_ids limit
if (
limit_method == SOURCE_IDS_LIMIT_METHOD_KEEP
and len(existing_full_source_ids) >= max_source_limit
and not edges_data
and already_description
)
):
if already_edge:
logger.info(
f"Skipped `{src_id}`~`{tgt_id}`: KEEP old chunks {already_source_ids}/{len(full_source_ids)}"
)
existing_edge_data = dict(already_edge)
return existing_edge_data
else:
logger.error(
f"Internal Error: already_node missing for `{src_id}`~`{tgt_id}`"
)
raise ValueError(
f"Internal Error: already_node missing for `{src_id}`~`{tgt_id}`"
)
# Process edges_data with None checks
# 6.1 Finalize source_id
source_id = GRAPH_FIELD_SEP.join(source_ids)
# 6.2 Finalize weight by summing new edges and existing weights
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
# Deduplicate by description, keeping first occurrence
# 6.2 Finalize keywords by merging existing and new keywords
all_keywords = set()
# Process already_keywords (which are comma-separated)
for keyword_str in already_keywords:
if keyword_str: # Skip empty strings
all_keywords.update(k.strip() for k in keyword_str.split(",") if k.strip())
# Process new keywords from edges_data
for edge in edges_data:
if edge.get("keywords"):
all_keywords.update(
k.strip() for k in edge["keywords"].split(",") if k.strip()
)
# Join all unique keywords with commas
keywords = ",".join(sorted(all_keywords))
# 7. Deduplicate by description, keeping first occurrence in the same document
unique_edges = {}
for dp in edges_data:
description_value = dp.get("description")
@ -1868,170 +1914,153 @@ async def _merge_edges_then_upsert(
)
sorted_descriptions = [dp["description"] for dp in sorted_edges]
truncation_info = ""
dd_message = ""
has_placeholder = False # Initialize to track placeholder in file paths
# Combine already_description with sorted new descriptions
description_list = already_description + sorted_descriptions
deduplicated_num = original_edges_count - len(sorted_descriptions)
if deduplicated_num > 0:
dd_message = f"dd:{deduplicated_num}"
if not description_list:
logger.error(f"Relation {src_id}~{tgt_id} has no description")
raise ValueError(f"Relation {src_id}~{tgt_id} has no description")
num_fragment = len(description_list)
already_fragment = len(already_description)
# 8. Get summary description an LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Relation",
f"({src_id}, {tgt_id})",
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
if skip_summary_due_to_limit:
description = (
already_edge.get("description", "(no description)")
if already_edge
else "(no description)"
# 9. Build file_path within MAX_FILE_PATHS limit
file_paths_list = []
seen_paths = set()
has_placeholder = False # Track if already_file_paths contains placeholder
max_file_paths = global_config.get("max_file_paths", DEFAULT_MAX_FILE_PATHS)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
# Check if this is a placeholder record
if fp and fp.startswith(f"...{file_path_placeholder}"): # Skip placeholders
has_placeholder = True
continue
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
# Collect from new data
for dp in edges_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
# Apply count limit
max_file_paths = global_config.get("max_file_paths")
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
llm_was_used = False
status_message = (
f"Skip merge for `{src_id}`~`{tgt_id}`: IGNORE_NEW limit reached"
)
logger.debug(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
elif num_fragment > 0:
# Get summary and LLM usage status
description, llm_was_used = await _handle_entity_relation_summary(
"Relation",
f"({src_id}, {tgt_id})",
description_list,
GRAPH_FIELD_SEP,
global_config,
llm_response_cache,
)
# Log based on actual LLM usage
if llm_was_used:
status_message = f"LLMmrg: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
# Add truncation info from apply_source_ids_limit if truncation occurred
if len(source_ids) < len(full_source_ids):
# Add + sign if has_placeholder is True, indicating actual file count is higher
full_source_count_str = (
f"{len(full_source_ids)}+"
if has_placeholder
else str(len(full_source_ids))
)
truncation_info = (
f"{limit_method}:{len(source_ids)}/{full_source_count_str}"
)
if dd_message or truncation_info:
status_message += f" ({', '.join([truncation_info, dd_message])})"
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
else:
logger.debug(status_message)
else:
logger.error(f"Edge {src_id} - {tgt_id} has no description")
description = "(no description)"
# Split all existing and new keywords into individual terms, then combine and deduplicate
all_keywords = set()
# Process already_keywords (which are comma-separated)
for keyword_str in already_keywords:
if keyword_str: # Skip empty strings
all_keywords.update(k.strip() for k in keyword_str.split(",") if k.strip())
# Process new keywords from edges_data
for edge in edges_data:
if edge.get("keywords"):
all_keywords.update(
k.strip() for k in edge["keywords"].split(",") if k.strip()
)
# Join all unique keywords with commas
keywords = ",".join(sorted(all_keywords))
source_id = GRAPH_FIELD_SEP.join(source_ids)
# Build file_path with count limit
if skip_summary_due_to_limit:
# Skip limit, keep original file_path
file_path = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp)
else:
# Collect and apply limit
file_paths_list = []
seen_paths = set()
has_placeholder = False # Track if already_file_paths contains placeholder
# Get placeholder to filter it out
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
# Collect from already_file_paths, excluding placeholder
for fp in already_file_paths:
# Check if this is a placeholder record
if fp and fp.startswith(f"...{file_path_placeholder}"):
has_placeholder = True
continue
# Skip placeholders (format: "...{placeholder}(showing X of Y)...")
if fp and fp not in seen_paths:
file_paths_list.append(fp)
seen_paths.add(fp)
# Add + sign to indicate actual file count is higher
original_count_str = (
f"{len(file_paths_list)}+" if has_placeholder else str(len(file_paths_list))
)
# Collect from new data
for dp in edges_data:
file_path_item = dp.get("file_path")
if file_path_item and file_path_item not in seen_paths:
file_paths_list.append(file_path_item)
seen_paths.add(file_path_item)
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
file_paths_list.append(f"...{file_path_placeholder}...(FIFO)")
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
file_paths_list.append(f"...{file_path_placeholder}...(KEEP Old)")
# Apply count limit
max_file_paths = global_config.get("max_file_paths")
logger.info(
f"Limited `{src_id}`~`{tgt_id}`: file_path {original_count_str} -> {max_file_paths} ({limit_method})"
)
# Finalize file_path
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
if len(file_paths_list) > max_file_paths:
limit_method = global_config.get(
"source_ids_limit_method", SOURCE_IDS_LIMIT_METHOD_KEEP
)
file_path_placeholder = global_config.get(
"file_path_more_placeholder", DEFAULT_FILE_PATH_MORE_PLACEHOLDER
)
original_count = len(file_paths_list)
# 10. Log based on actual LLM usage
num_fragment = len(description_list)
already_fragment = len(already_description)
if llm_was_used:
status_message = f"LLMmrg: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
else:
status_message = f"Merged: `{src_id}`~`{tgt_id}` | {already_fragment}+{num_fragment - already_fragment}"
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
# FIFO: keep tail (newest), discard head
file_paths_list = file_paths_list[-max_file_paths:]
else:
# KEEP: keep head (earliest), discard tail
file_paths_list = file_paths_list[:max_file_paths]
truncation_info = truncation_info_log = ""
if len(source_ids) < len(full_source_ids):
# Add truncation info from apply_source_ids_limit if truncation occurred
truncation_info_log = f"{limit_method} {len(source_ids)}/{len(full_source_ids)}"
if limit_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
truncation_info = truncation_info_log
else:
truncation_info = "KEEP Old"
file_paths_list.append(
f"...{file_path_placeholder}(showing {max_file_paths} of {original_count})..."
)
logger.info(
f"Limited `{src_id}`~`{tgt_id}`: file_path {original_count} -> {max_file_paths} ({limit_method})"
)
deduplicated_num = already_fragment + len(edges_data) - num_fragment
dd_message = ""
if deduplicated_num > 0:
# Duplicated description detected across multiple trucks for the same entity
dd_message = f"dd {deduplicated_num}"
file_path = GRAPH_FIELD_SEP.join(file_paths_list)
if dd_message or truncation_info_log:
status_message += (
f" ({', '.join(filter(None, [truncation_info_log, dd_message]))})"
)
# Add message to pipeline satus when merge happens
if already_fragment > 0 or llm_was_used:
logger.info(status_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = status_message
pipeline_status["history_messages"].append(status_message)
else:
logger.debug(status_message)
# 11. Update both graph and vector db
for need_insert_id in [src_id, tgt_id]:
if not (await knowledge_graph_inst.has_node(need_insert_id)):
node_created_at = int(time.time())
node_data = {
"entity_id": need_insert_id,
"source_id": source_id,
"description": description,
"entity_type": "UNKNOWN",
"file_path": file_path,
"created_at": int(time.time()),
"created_at": node_created_at,
"truncate": "",
}
await knowledge_graph_inst.upsert_node(need_insert_id, node_data=node_data)
if entity_vdb is not None:
entity_vdb_id = compute_mdhash_id(need_insert_id, prefix="ent-")
entity_content = f"{need_insert_id}\n{description}"
vdb_data = {
entity_vdb_id: {
"content": entity_content,
"entity_name": need_insert_id,
"source_id": source_id,
"entity_type": "UNKNOWN",
"file_path": file_path,
}
}
await safe_vdb_operation_with_exception(
operation=lambda payload=vdb_data: entity_vdb.upsert(payload),
operation_name="added_entity_upsert",
entity_name=need_insert_id,
max_retries=3,
retry_delay=0.1,
)
# Track entities added during edge processing
if added_entities is not None:
entity_data = {
@ -2040,10 +2069,11 @@ async def _merge_edges_then_upsert(
"description": description,
"source_id": source_id,
"file_path": file_path,
"created_at": int(time.time()),
"created_at": node_created_at,
}
added_entities.append(entity_data)
edge_created_at = int(time.time())
await knowledge_graph_inst.upsert_edge(
src_id,
tgt_id,
@ -2053,7 +2083,7 @@ async def _merge_edges_then_upsert(
keywords=keywords,
source_id=source_id,
file_path=file_path,
created_at=int(time.time()),
created_at=edge_created_at,
truncate=truncation_info,
),
)
@ -2065,10 +2095,41 @@ async def _merge_edges_then_upsert(
keywords=keywords,
source_id=source_id,
file_path=file_path,
created_at=int(time.time()),
created_at=edge_created_at,
truncate=truncation_info,
weight=weight,
)
if relationships_vdb is not None:
rel_vdb_id = compute_mdhash_id(src_id + tgt_id, prefix="rel-")
rel_vdb_id_reverse = compute_mdhash_id(tgt_id + src_id, prefix="rel-")
try:
await relationships_vdb.delete([rel_vdb_id, rel_vdb_id_reverse])
except Exception as e:
logger.debug(
f"Could not delete old relationship vector records {rel_vdb_id}, {rel_vdb_id_reverse}: {e}"
)
rel_content = f"{keywords}\t{src_id}\n{tgt_id}\n{description}"
vdb_data = {
rel_vdb_id: {
"src_id": src_id,
"tgt_id": tgt_id,
"source_id": source_id,
"content": rel_content,
"keywords": keywords,
"description": description,
"weight": weight,
"file_path": file_path,
}
}
await safe_vdb_operation_with_exception(
operation=lambda payload=vdb_data: relationships_vdb.upsert(payload),
operation_name="relationship_upsert",
entity_name=f"{src_id}-{tgt_id}",
max_retries=3,
retry_delay=0.2,
)
return edge_data
@ -2158,12 +2219,12 @@ async def merge_nodes_and_edges(
[entity_name], namespace=namespace, enable_logging=False
):
try:
logger.debug(f"Inserting {entity_name} in Graph")
# Graph database operation (critical path, must succeed)
logger.debug(f"Processing entity {entity_name}")
entity_data = await _merge_nodes_then_upsert(
entity_name,
entities,
knowledge_graph_inst,
entity_vdb,
global_config,
pipeline_status,
pipeline_status_lock,
@ -2171,36 +2232,9 @@ async def merge_nodes_and_edges(
entity_chunks_storage,
)
# Vector database operation (equally critical, must succeed)
if entity_vdb is not None and entity_data:
data_for_vdb = {
compute_mdhash_id(
str(entity_data["entity_name"]), prefix="ent-"
): {
"entity_name": entity_data["entity_name"],
"entity_type": entity_data["entity_type"],
"content": f"{entity_data['entity_name']}\n{entity_data['description']}",
"source_id": entity_data["source_id"],
"file_path": entity_data.get(
"file_path", "unknown_source"
),
}
}
logger.debug(f"Inserting {entity_name} in Graph")
# Use safe operation wrapper - VDB failure must throw exception
await safe_vdb_operation_with_exception(
operation=lambda: entity_vdb.upsert(data_for_vdb),
operation_name="entity_upsert",
entity_name=entity_name,
max_retries=3,
retry_delay=0.1,
)
return entity_data
except Exception as e:
# Any database operation failure is critical
error_msg = (
f"Critical error in entity processing for `{entity_name}`: {e}"
)
@ -2290,12 +2324,14 @@ async def merge_nodes_and_edges(
try:
added_entities = [] # Track entities added during edge processing
# Graph database operation (critical path, must succeed)
logger.debug(f"Processing relation {sorted_edge_key}")
edge_data = await _merge_edges_then_upsert(
edge_key[0],
edge_key[1],
edges,
knowledge_graph_inst,
relationships_vdb,
entity_vdb,
global_config,
pipeline_status,
pipeline_status_lock,
@ -2307,66 +2343,9 @@ async def merge_nodes_and_edges(
if edge_data is None:
return None, []
# Vector database operation (equally critical, must succeed)
if relationships_vdb is not None:
data_for_vdb = {
compute_mdhash_id(
edge_data["src_id"] + edge_data["tgt_id"], prefix="rel-"
): {
"src_id": edge_data["src_id"],
"tgt_id": edge_data["tgt_id"],
"keywords": edge_data["keywords"],
"content": f"{edge_data['src_id']}\t{edge_data['tgt_id']}\n{edge_data['keywords']}\n{edge_data['description']}",
"source_id": edge_data["source_id"],
"file_path": edge_data.get(
"file_path", "unknown_source"
),
"weight": edge_data.get("weight", 1.0),
}
}
# Use safe operation wrapper - VDB failure must throw exception
await safe_vdb_operation_with_exception(
operation=lambda: relationships_vdb.upsert(data_for_vdb),
operation_name="relationship_upsert",
entity_name=f"{edge_data['src_id']}-{edge_data['tgt_id']}",
max_retries=3,
retry_delay=0.1,
)
# Update added_entities to entity vector database using safe operation wrapper
if added_entities and entity_vdb is not None:
for entity_data in added_entities:
entity_vdb_id = compute_mdhash_id(
entity_data["entity_name"], prefix="ent-"
)
entity_content = f"{entity_data['entity_name']}\n{entity_data['description']}"
vdb_data = {
entity_vdb_id: {
"content": entity_content,
"entity_name": entity_data["entity_name"],
"source_id": entity_data["source_id"],
"entity_type": entity_data["entity_type"],
"file_path": entity_data.get(
"file_path", "unknown_source"
),
}
}
# Use safe operation wrapper - VDB failure must throw exception
await safe_vdb_operation_with_exception(
operation=lambda data=vdb_data: entity_vdb.upsert(data),
operation_name="added_entity_upsert",
entity_name=entity_data["entity_name"],
max_retries=3,
retry_delay=0.1,
)
return edge_data, added_entities
except Exception as e:
# Any database operation failure is critical
error_msg = f"Critical error in relationship processing for `{sorted_edge_key}`: {e}"
logger.error(error_msg)