Refactor entity merging with unified attribute merge function

• Update GRAPH_FIELD_SEP comment clarity
• Deprecate merge_strategy parameter
• Unify entity/relation merge logic
• Add join_unique_comma strategy
This commit is contained in:
yangdx 2025-10-27 00:04:17 +08:00
parent 38559373b3
commit ab32456a79
2 changed files with 58 additions and 81 deletions

View file

@ -38,7 +38,7 @@ DEFAULT_ENTITY_TYPES = [
"NaturalObject",
]
# Separator for graph fields
# Separator for: description, source_id and relation-key fields(Can not be changed after data inserted)
GRAPH_FIELD_SEP = "<SEP>"
# Query and retrieval configuration defaults

View file

@ -1050,12 +1050,8 @@ async def amerge_entities(
relationships_vdb: Vector database storage for relationships
source_entities: List of source entity names to merge
target_entity: Name of the target entity after merging
merge_strategy: Merge strategy configuration, e.g. {"description": "concatenate", "entity_type": "keep_first"}
Supported strategies:
- "concatenate": Concatenate all values (for text fields)
- "keep_first": Keep the first non-empty value
- "keep_last": Keep the last non-empty value
- "join_unique": Join all unique values (for fields separated by delimiter)
merge_strategy: Deprecated (Each field uses its own default strategy). If provided,
customizations are applied but a warning is logged.
target_entity_data: Dictionary of specific values to set for the target entity,
overriding any merged values, e.g. {"description": "custom description", "entity_type": "PERSON"}
@ -1066,18 +1062,23 @@ async def amerge_entities(
# Use graph database lock to ensure atomic graph and vector db operations
async with graph_db_lock:
try:
# Default merge strategy
default_strategy = {
# Default merge strategy for entities
default_entity_merge_strategy = {
"description": "concatenate",
"entity_type": "keep_first",
"source_id": "join_unique",
"file_path": "join_unique",
}
merge_strategy = (
default_strategy
if merge_strategy is None
else {**default_strategy, **merge_strategy}
)
effective_entity_merge_strategy = default_entity_merge_strategy
if merge_strategy:
logger.warning(
"merge_strategy parameter is deprecated and will be ignored in a future "
"release. Provided overrides will be applied for now."
)
effective_entity_merge_strategy = {
**default_entity_merge_strategy,
**merge_strategy,
}
target_entity_data = (
{} if target_entity_data is None else target_entity_data
)
@ -1103,10 +1104,11 @@ async def amerge_entities(
)
# 3. Merge entity data
merged_entity_data = _merge_entity_attributes(
merged_entity_data = _merge_attributes(
list(source_entities_data.values())
+ ([existing_target_entity_data] if target_exists else []),
merge_strategy,
effective_entity_merge_strategy,
filter_none_only=False, # Use entity behavior: filter falsy values
)
# Apply any explicitly provided target entity data (overrides merged data)
@ -1168,14 +1170,16 @@ async def amerge_entities(
if relation_key in relation_updates:
# Merge relationship data
existing_data = relation_updates[relation_key]["data"]
merged_relation = _merge_relation_attributes(
merged_relation = _merge_attributes(
[existing_data, edge_data],
{
"description": "concatenate",
"keywords": "join_unique",
"keywords": "join_unique_comma",
"source_id": "join_unique",
"file_path": "join_unique",
"weight": "max",
},
filter_none_only=True, # Use relation behavior: only filter None
)
relation_updates[relation_key]["data"] = merged_relation
logger.info(
@ -1299,81 +1303,45 @@ async def amerge_entities(
raise
def _merge_entity_attributes(
entity_data_list: list[dict[str, Any]], merge_strategy: dict[str, str]
def _merge_attributes(
data_list: list[dict[str, Any]],
merge_strategy: dict[str, str],
filter_none_only: bool = False,
) -> dict[str, Any]:
"""Merge attributes from multiple entities.
"""Merge attributes from multiple entities or relationships.
This unified function handles merging of both entity and relationship attributes,
applying different merge strategies per field.
Args:
entity_data_list: List of dictionaries containing entity data
merge_strategy: Merge strategy for each field
data_list: List of dictionaries containing entity or relationship data
merge_strategy: Merge strategy for each field. Supported strategies:
- "concatenate": Join all values with GRAPH_FIELD_SEP
- "keep_first": Keep the first non-empty value
- "keep_last": Keep the last non-empty value
- "join_unique": Join unique items separated by GRAPH_FIELD_SEP
- "join_unique_comma": Join unique items separated by comma and space
- "max": Keep the maximum numeric value (for numeric fields)
filter_none_only: If True, only filter None values (keep empty strings, 0, etc.).
If False, filter all falsy values. Default is False for backward compatibility.
Returns:
Dictionary containing merged entity data
Dictionary containing merged data
"""
merged_data = {}
# Collect all possible keys
all_keys = set()
for data in entity_data_list:
for data in data_list:
all_keys.update(data.keys())
# Merge values for each key
for key in all_keys:
# Get all values for this key
values = [data.get(key) for data in entity_data_list if data.get(key)]
if not values:
continue
# Merge values according to strategy
strategy = merge_strategy.get(key, "keep_first")
if strategy == "concatenate":
merged_data[key] = "\n\n".join(values)
elif strategy == "keep_first":
merged_data[key] = values[0]
elif strategy == "keep_last":
merged_data[key] = values[-1]
elif strategy == "join_unique":
# Handle fields separated by GRAPH_FIELD_SEP
unique_items = set()
for value in values:
items = value.split(GRAPH_FIELD_SEP)
unique_items.update(items)
merged_data[key] = GRAPH_FIELD_SEP.join(unique_items)
# Get all values for this key based on filtering mode
if filter_none_only:
values = [data.get(key) for data in data_list if data.get(key) is not None]
else:
# Default strategy
merged_data[key] = values[0]
return merged_data
def _merge_relation_attributes(
relation_data_list: list[dict[str, Any]], merge_strategy: dict[str, str]
) -> dict[str, Any]:
"""Merge attributes from multiple relationships.
Args:
relation_data_list: List of dictionaries containing relationship data
merge_strategy: Merge strategy for each field
Returns:
Dictionary containing merged relationship data
"""
merged_data = {}
# Collect all possible keys
all_keys = set()
for data in relation_data_list:
all_keys.update(data.keys())
# Merge values for each key
for key in all_keys:
# Get all values for this key
values = [
data.get(key) for data in relation_data_list if data.get(key) is not None
]
values = [data.get(key) for data in data_list if data.get(key)]
if not values:
continue
@ -1382,7 +1350,8 @@ def _merge_relation_attributes(
strategy = merge_strategy.get(key, "keep_first")
if strategy == "concatenate":
merged_data[key] = "\n\n".join(str(v) for v in values)
# Convert all values to strings and join with GRAPH_FIELD_SEP
merged_data[key] = GRAPH_FIELD_SEP.join(str(v) for v in values)
elif strategy == "keep_first":
merged_data[key] = values[0]
elif strategy == "keep_last":
@ -1394,14 +1363,22 @@ def _merge_relation_attributes(
items = str(value).split(GRAPH_FIELD_SEP)
unique_items.update(items)
merged_data[key] = GRAPH_FIELD_SEP.join(unique_items)
elif strategy == "join_unique_comma":
# Handle fields separated by comma, join unique items with comma
unique_items = set()
for value in values:
items = str(value).split(",")
unique_items.update(item.strip() for item in items if item.strip())
merged_data[key] = ",".join(sorted(unique_items))
elif strategy == "max":
# For numeric fields like weight
try:
merged_data[key] = max(float(v) for v in values)
except (ValueError, TypeError):
# Fallback to first value if conversion fails
merged_data[key] = values[0]
else:
# Default strategy
# Default strategy: keep first value
merged_data[key] = values[0]
return merged_data