Enhancement: support aws bedrock as an LLm binding #1733

This commit is contained in:
SJ 2025-08-13 02:08:13 -05:00 committed by GitHub
parent 5b0e26d9da
commit 99643f01de
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 299 additions and 192 deletions

View file

@ -77,9 +77,7 @@ def parse_args() -> argparse.Namespace:
argparse.Namespace: Parsed arguments
"""
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
parser = argparse.ArgumentParser(description="LightRAG FastAPI Server with separate working and input directories")
# Server configuration
parser.add_argument(
@ -209,14 +207,14 @@ def parse_args() -> argparse.Namespace:
"--llm-binding",
type=str,
default=get_env_value("LLM_BINDING", "ollama"),
choices=["lollms", "ollama", "openai", "openai-ollama", "azure_openai"],
choices=["lollms", "ollama", "openai", "openai-ollama", "azure_openai", "aws_bedrock"],
help="LLM binding type (default: from env or ollama)",
)
parser.add_argument(
"--embedding-binding",
type=str,
default=get_env_value("EMBEDDING_BINDING", "ollama"),
choices=["lollms", "ollama", "openai", "azure_openai"],
choices=["lollms", "ollama", "openai", "azure_openai", "aws_bedrock", "jina"],
help="Embedding binding type (default: from env or ollama)",
)
@ -272,18 +270,10 @@ def parse_args() -> argparse.Namespace:
args.input_dir = os.path.abspath(args.input_dir)
# Inject storage configuration from environment variables
args.kv_storage = get_env_value(
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
)
args.doc_status_storage = get_env_value(
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
)
args.graph_storage = get_env_value(
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
)
args.vector_storage = get_env_value(
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
)
args.kv_storage = get_env_value("LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE)
args.doc_status_storage = get_env_value("LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE)
args.graph_storage = get_env_value("LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE)
args.vector_storage = get_env_value("LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE)
# Get MAX_PARALLEL_INSERT from environment
args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int)
@ -299,12 +289,8 @@ def parse_args() -> argparse.Namespace:
# Ollama ctx_num
args.ollama_num_ctx = get_env_value("OLLAMA_NUM_CTX", 32768, int)
args.llm_binding_host = get_env_value(
"LLM_BINDING_HOST", get_default_host(args.llm_binding)
)
args.embedding_binding_host = get_env_value(
"EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding)
)
args.llm_binding_host = get_env_value("LLM_BINDING_HOST", get_default_host(args.llm_binding))
args.embedding_binding_host = get_env_value("EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding))
args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None)
args.embedding_binding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
@ -318,9 +304,7 @@ def parse_args() -> argparse.Namespace:
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
# Inject LLM cache configuration
args.enable_llm_cache_for_extract = get_env_value(
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
)
args.enable_llm_cache_for_extract = get_env_value("ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool)
args.enable_llm_cache = get_env_value("ENABLE_LLM_CACHE", True, bool)
# Handle Ollama LLM temperature with priority cascade when llm-binding is ollama
@ -370,40 +354,24 @@ def parse_args() -> argparse.Namespace:
args.rerank_binding_api_key = get_env_value("RERANK_BINDING_API_KEY", None)
# Min rerank score configuration
args.min_rerank_score = get_env_value(
"MIN_RERANK_SCORE", DEFAULT_MIN_RERANK_SCORE, float
)
args.min_rerank_score = get_env_value("MIN_RERANK_SCORE", DEFAULT_MIN_RERANK_SCORE, float)
# Query configuration
args.history_turns = get_env_value("HISTORY_TURNS", DEFAULT_HISTORY_TURNS, int)
args.top_k = get_env_value("TOP_K", DEFAULT_TOP_K, int)
args.chunk_top_k = get_env_value("CHUNK_TOP_K", DEFAULT_CHUNK_TOP_K, int)
args.max_entity_tokens = get_env_value(
"MAX_ENTITY_TOKENS", DEFAULT_MAX_ENTITY_TOKENS, int
)
args.max_relation_tokens = get_env_value(
"MAX_RELATION_TOKENS", DEFAULT_MAX_RELATION_TOKENS, int
)
args.max_total_tokens = get_env_value(
"MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS, int
)
args.cosine_threshold = get_env_value(
"COSINE_THRESHOLD", DEFAULT_COSINE_THRESHOLD, float
)
args.related_chunk_number = get_env_value(
"RELATED_CHUNK_NUMBER", DEFAULT_RELATED_CHUNK_NUMBER, int
)
args.max_entity_tokens = get_env_value("MAX_ENTITY_TOKENS", DEFAULT_MAX_ENTITY_TOKENS, int)
args.max_relation_tokens = get_env_value("MAX_RELATION_TOKENS", DEFAULT_MAX_RELATION_TOKENS, int)
args.max_total_tokens = get_env_value("MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS, int)
args.cosine_threshold = get_env_value("COSINE_THRESHOLD", DEFAULT_COSINE_THRESHOLD, float)
args.related_chunk_number = get_env_value("RELATED_CHUNK_NUMBER", DEFAULT_RELATED_CHUNK_NUMBER, int)
# Add missing environment variables for health endpoint
args.force_llm_summary_on_merge = get_env_value(
"FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
)
args.embedding_func_max_async = get_env_value(
"EMBEDDING_FUNC_MAX_ASYNC", DEFAULT_EMBEDDING_FUNC_MAX_ASYNC, int
)
args.embedding_batch_num = get_env_value(
"EMBEDDING_BATCH_NUM", DEFAULT_EMBEDDING_BATCH_NUM, int
)
args.embedding_func_max_async = get_env_value("EMBEDDING_FUNC_MAX_ASYNC", DEFAULT_EMBEDDING_FUNC_MAX_ASYNC, int)
args.embedding_batch_num = get_env_value("EMBEDDING_BATCH_NUM", DEFAULT_EMBEDDING_BATCH_NUM, int)
ollama_server_infos.LIGHTRAG_NAME = args.simulated_model_name
ollama_server_infos.LIGHTRAG_TAG = args.simulated_model_tag
@ -417,9 +385,7 @@ def update_uvicorn_mode_config():
original_workers = global_args.workers
global_args.workers = 1
# Log warning directly here
logging.warning(
f"In uvicorn mode, workers parameter was set to {original_workers}. Forcing workers=1"
)
logging.warning(f"In uvicorn mode, workers parameter was set to {original_workers}. Forcing workers=1")
global_args = parse_args()

View file

@ -106,6 +106,7 @@ def create_app(args):
"openai",
"openai-ollama",
"azure_openai",
"aws_bedrock",
]:
raise Exception("llm binding not supported")
@ -114,6 +115,7 @@ def create_app(args):
"ollama",
"openai",
"azure_openai",
"aws_bedrock",
"jina",
]:
raise Exception("embedding binding not supported")
@ -128,9 +130,7 @@ def create_app(args):
# Add SSL validation
if args.ssl:
if not args.ssl_certfile or not args.ssl_keyfile:
raise Exception(
"SSL certificate and key files must be provided when SSL is enabled"
)
raise Exception("SSL certificate and key files must be provided when SSL is enabled")
if not os.path.exists(args.ssl_certfile):
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
if not os.path.exists(args.ssl_keyfile):
@ -188,10 +188,11 @@ def create_app(args):
# Initialize FastAPI
app_kwargs = {
"title": "LightRAG Server API",
"description": "Providing API for LightRAG core, Web UI and Ollama Model Emulation"
+ "(With authentication)"
if api_key
else "",
"description": (
"Providing API for LightRAG core, Web UI and Ollama Model Emulation" + "(With authentication)"
if api_key
else ""
),
"version": __api_version__,
"openapi_url": "/openapi.json", # Explicitly set OpenAPI schema URL
"docs_url": "/docs", # Explicitly set docs URL
@ -244,9 +245,9 @@ def create_app(args):
azure_openai_complete_if_cache,
azure_openai_embed,
)
if args.llm_binding == "aws_bedrock" or args.embedding_binding == "aws_bedrock":
from lightrag.llm.bedrock import bedrock_complete_if_cache, bedrock_embed
if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama":
from lightrag.llm.openai import openai_complete_if_cache
from lightrag.llm.ollama import ollama_embed
from lightrag.llm.binding_options import OllamaEmbeddingOptions
if args.embedding_binding == "jina":
from lightrag.llm.jina import jina_embed
@ -312,41 +313,80 @@ def create_app(args):
**kwargs,
)
async def bedrock_model_complete(
prompt,
system_prompt=None,
history_messages=None,
keyword_extraction=False,
**kwargs,
) -> str:
keyword_extraction = kwargs.pop("keyword_extraction", None)
if keyword_extraction:
kwargs["response_format"] = GPTKeywordExtractionFormat
if history_messages is None:
history_messages = []
# Use global temperature for Bedrock
kwargs["temperature"] = args.temperature
return await bedrock_complete_if_cache(
args.llm_model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
embedding_func = EmbeddingFunc(
embedding_dim=args.embedding_dim,
func=lambda texts: lollms_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "lollms"
else ollama_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
options=OllamaEmbeddingOptions.options_dict(args),
)
if args.embedding_binding == "ollama"
else azure_openai_embed(
texts,
model=args.embedding_model, # no host is used for openai,
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "azure_openai"
else jina_embed(
texts,
dimensions=args.embedding_dim,
base_url=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "jina"
else openai_embed(
texts,
model=args.embedding_model,
base_url=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
func=lambda texts: (
lollms_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "lollms"
else (
ollama_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
options=OllamaEmbeddingOptions.options_dict(args),
)
if args.embedding_binding == "ollama"
else (
azure_openai_embed(
texts,
model=args.embedding_model, # no host is used for openai,
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "azure_openai"
else (
bedrock_embed(
texts,
model=args.embedding_model,
)
if args.embedding_binding == "aws_bedrock"
else (
jina_embed(
texts,
dimensions=args.embedding_dim,
base_url=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
)
if args.embedding_binding == "jina"
else openai_embed(
texts,
model=args.embedding_model,
base_url=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
)
)
)
)
)
),
)
@ -355,9 +395,7 @@ def create_app(args):
if args.rerank_binding_api_key and args.rerank_binding_host:
from lightrag.rerank import custom_rerank
async def server_rerank_func(
query: str, documents: list, top_n: int = None, **kwargs
):
async def server_rerank_func(query: str, documents: list, top_n: int = None, **kwargs):
"""Server rerank function with configuration from environment variables"""
return await custom_rerank(
query=query,
@ -370,9 +408,7 @@ def create_app(args):
)
rerank_model_func = server_rerank_func
logger.info(
f"Rerank model configured: {args.rerank_model} (can be enabled per query)"
)
logger.info(f"Rerank model configured: {args.rerank_model} (can be enabled per query)")
else:
logger.info(
"Rerank model not configured. Set RERANK_BINDING_API_KEY and RERANK_BINDING_HOST to enable reranking."
@ -381,41 +417,43 @@ def create_app(args):
# Create ollama_server_infos from command line arguments
from lightrag.api.config import OllamaServerInfos
ollama_server_infos = OllamaServerInfos(
name=args.simulated_model_name, tag=args.simulated_model_tag
)
ollama_server_infos = OllamaServerInfos(name=args.simulated_model_name, tag=args.simulated_model_tag)
# Initialize RAG
if args.llm_binding in ["lollms", "ollama", "openai"]:
if args.llm_binding in ["lollms", "ollama", "openai", "aws_bedrock"]:
rag = LightRAG(
working_dir=args.working_dir,
workspace=args.workspace,
llm_model_func=lollms_model_complete
if args.llm_binding == "lollms"
else ollama_model_complete
if args.llm_binding == "ollama"
else openai_alike_model_complete,
llm_model_func=(
lollms_model_complete
if args.llm_binding == "lollms"
else (
ollama_model_complete
if args.llm_binding == "ollama"
else bedrock_model_complete if args.llm_binding == "aws_bedrock" else openai_alike_model_complete
)
),
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
summary_max_tokens=args.max_tokens,
chunk_token_size=int(args.chunk_size),
chunk_overlap_token_size=int(args.chunk_overlap_size),
llm_model_kwargs={
"host": args.llm_binding_host,
"timeout": args.timeout,
"options": OllamaLLMOptions.options_dict(args),
"api_key": args.llm_binding_api_key,
}
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
else {},
llm_model_kwargs=(
{
"host": args.llm_binding_host,
"timeout": args.timeout,
"options": OllamaLLMOptions.options_dict(args),
"api_key": args.llm_binding_api_key,
}
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
else {}
),
embedding_func=embedding_func,
kv_storage=args.kv_storage,
graph_storage=args.graph_storage,
vector_storage=args.vector_storage,
doc_status_storage=args.doc_status_storage,
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
vector_db_storage_cls_kwargs={"cosine_better_than_threshold": args.cosine_threshold},
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
enable_llm_cache=args.enable_llm_cache,
rerank_model_func=rerank_model_func,
@ -442,9 +480,7 @@ def create_app(args):
graph_storage=args.graph_storage,
vector_storage=args.vector_storage,
doc_status_storage=args.doc_status_storage,
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
vector_db_storage_cls_kwargs={"cosine_better_than_threshold": args.cosine_threshold},
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
enable_llm_cache=args.enable_llm_cache,
rerank_model_func=rerank_model_func,
@ -480,9 +516,7 @@ def create_app(args):
if not auth_handler.accounts:
# Authentication not configured, return guest token
guest_token = auth_handler.create_token(
username="guest", role="guest", metadata={"auth_mode": "disabled"}
)
guest_token = auth_handler.create_token(username="guest", role="guest", metadata={"auth_mode": "disabled"})
return {
"auth_configured": False,
"access_token": guest_token,
@ -508,9 +542,7 @@ def create_app(args):
async def login(form_data: OAuth2PasswordRequestForm = Depends()):
if not auth_handler.accounts:
# Authentication not configured, return guest token
guest_token = auth_handler.create_token(
username="guest", role="guest", metadata={"auth_mode": "disabled"}
)
guest_token = auth_handler.create_token(username="guest", role="guest", metadata={"auth_mode": "disabled"})
return {
"access_token": guest_token,
"token_type": "bearer",
@ -523,14 +555,10 @@ def create_app(args):
}
username = form_data.username
if auth_handler.accounts.get(username) != form_data.password:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect credentials"
)
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect credentials")
# Regular user login
user_token = auth_handler.create_token(
username=username, role="user", metadata={"auth_mode": "enabled"}
)
user_token = auth_handler.create_token(username=username, role="user", metadata={"auth_mode": "enabled"})
return {
"access_token": user_token,
"token_type": "bearer",
@ -579,12 +607,8 @@ def create_app(args):
"max_graph_nodes": args.max_graph_nodes,
# Rerank configuration (based on whether rerank model is configured)
"enable_rerank": rerank_model_func is not None,
"rerank_model": args.rerank_model
if rerank_model_func is not None
else None,
"rerank_binding_host": args.rerank_binding_host
if rerank_model_func is not None
else None,
"rerank_model": args.rerank_model if rerank_model_func is not None else None,
"rerank_binding_host": args.rerank_binding_host if rerank_model_func is not None else None,
# Environment variable status (requested configuration)
"summary_language": args.summary_language,
"force_llm_summary_on_merge": args.force_llm_summary_on_merge,
@ -614,17 +638,11 @@ def create_app(args):
response = await super().get_response(path, scope)
if path.endswith(".html"):
response.headers["Cache-Control"] = (
"no-cache, no-store, must-revalidate"
)
response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate"
response.headers["Pragma"] = "no-cache"
response.headers["Expires"] = "0"
elif (
"/assets/" in path
): # Assets (JS, CSS, images, fonts) generated by Vite with hash in filename
response.headers["Cache-Control"] = (
"public, max-age=31536000, immutable"
)
elif "/assets/" in path: # Assets (JS, CSS, images, fonts) generated by Vite with hash in filename
response.headers["Cache-Control"] = "public, max-age=31536000, immutable"
# Add other rules here if needed for non-HTML, non-asset files
# Ensure correct Content-Type
@ -640,9 +658,7 @@ def create_app(args):
static_dir.mkdir(exist_ok=True)
app.mount(
"/webui",
SmartStaticFiles(
directory=static_dir, html=True, check_dir=True
), # Use SmartStaticFiles
SmartStaticFiles(directory=static_dir, html=True, check_dir=True), # Use SmartStaticFiles
name="webui",
)
@ -798,9 +814,7 @@ def main():
}
)
print(
f"Starting Uvicorn server in single-process mode on {global_args.host}:{global_args.port}"
)
print(f"Starting Uvicorn server in single-process mode on {global_args.host}:{global_args.port}")
uvicorn.run(**uvicorn_config)

View file

@ -15,11 +15,25 @@ from tenacity import (
retry_if_exception_type,
)
import sys
if sys.version_info < (3, 9):
from typing import AsyncIterator
else:
from collections.abc import AsyncIterator
from typing import Union
class BedrockError(Exception):
"""Generic error for issues related to Amazon Bedrock"""
def _set_env_if_present(key: str, value):
"""Set environment variable only if a non-empty value is provided."""
if value is not None and value != "":
os.environ[key] = value
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, max=60),
@ -34,17 +48,35 @@ async def bedrock_complete_if_cache(
aws_secret_access_key=None,
aws_session_token=None,
**kwargs,
) -> str:
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
"AWS_ACCESS_KEY_ID", aws_access_key_id
)
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
)
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
"AWS_SESSION_TOKEN", aws_session_token
)
) -> Union[str, AsyncIterator[str]]:
# Respect existing env; only set if a non-empty value is available
access_key = os.environ.get("AWS_ACCESS_KEY_ID") or aws_access_key_id
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY") or aws_secret_access_key
session_token = os.environ.get("AWS_SESSION_TOKEN") or aws_session_token
_set_env_if_present("AWS_ACCESS_KEY_ID", access_key)
_set_env_if_present("AWS_SECRET_ACCESS_KEY", secret_key)
_set_env_if_present("AWS_SESSION_TOKEN", session_token)
# Region handling: prefer env, else kwarg (optional)
region = os.environ.get("AWS_REGION") or kwargs.pop("aws_region", None)
kwargs.pop("hashing_kv", None)
# Capture stream flag (if provided) and remove from kwargs since it's not a Bedrock API parameter
# We'll use this to determine whether to call converse_stream or converse
stream = bool(kwargs.pop("stream", False))
# Remove unsupported args for Bedrock Converse API
for k in [
"response_format",
"tools",
"tool_choice",
"seed",
"presence_penalty",
"frequency_penalty",
"n",
"logprobs",
"top_logprobs",
"max_completion_tokens",
"response_format",
]:
kwargs.pop(k, None)
# Fix message history format
messages = []
for history_message in history_messages:
@ -68,30 +100,126 @@ async def bedrock_complete_if_cache(
"top_p": "topP",
"stop_sequences": "stopSequences",
}
if inference_params := list(
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
):
if inference_params := list(set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])):
args["inferenceConfig"] = {}
for param in inference_params:
args["inferenceConfig"][inference_params_map.get(param, param)] = (
kwargs.pop(param)
)
args["inferenceConfig"][inference_params_map.get(param, param)] = kwargs.pop(param)
# Call model via Converse API
# Import logging for error handling
import logging
# For streaming responses, we need a different approach to keep the connection open
if stream:
# Create a session that will be used throughout the streaming process
session = aioboto3.Session()
client = None
# Define the generator function that will manage the client lifecycle
async def stream_generator():
nonlocal client
# Create the client outside the generator to ensure it stays open
client = await session.client("bedrock-runtime", region_name=region).__aenter__()
event_stream = None
iteration_started = False
try:
# Make the API call
response = await client.converse_stream(**args, **kwargs)
event_stream = response.get("stream")
iteration_started = True
# Process the stream
async for event in event_stream:
# Validate event structure
if not event or not isinstance(event, dict):
continue
if "contentBlockDelta" in event:
delta = event["contentBlockDelta"].get("delta", {})
text = delta.get("text")
if text:
yield text
# Handle other event types that might indicate stream end
elif "messageStop" in event:
break
except Exception as e:
# Log the specific error for debugging
logging.error(f"Bedrock streaming error: {e}")
# Try to clean up resources if possible
if (
iteration_started
and event_stream
and hasattr(event_stream, "aclose")
and callable(getattr(event_stream, "aclose", None))
):
try:
await event_stream.aclose()
except Exception as close_error:
logging.warning(f"Failed to close Bedrock event stream: {close_error}")
raise BedrockError(f"Streaming error: {e}")
finally:
# Clean up the event stream
if (
iteration_started
and event_stream
and hasattr(event_stream, "aclose")
and callable(getattr(event_stream, "aclose", None))
):
try:
await event_stream.aclose()
except Exception as close_error:
logging.warning(f"Failed to close Bedrock event stream in finally block: {close_error}")
# Clean up the client
if client:
try:
await client.__aexit__(None, None, None)
except Exception as client_close_error:
logging.warning(f"Failed to close Bedrock client: {client_close_error}")
# Return the generator that manages its own lifecycle
return stream_generator()
# For non-streaming responses, use the standard async context manager pattern
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
async with session.client("bedrock-runtime", region_name=region) as bedrock_async_client:
try:
# Use converse for non-streaming responses
response = await bedrock_async_client.converse(**args, **kwargs)
except Exception as e:
raise BedrockError(e)
return response["output"]["message"]["content"][0]["text"]
# Validate response structure
if (
not response
or "output" not in response
or "message" not in response["output"]
or "content" not in response["output"]["message"]
or not response["output"]["message"]["content"]
):
raise BedrockError("Invalid response structure from Bedrock API")
content = response["output"]["message"]["content"][0]["text"]
if not content or content.strip() == "":
raise BedrockError("Received empty content from Bedrock API")
return content
except Exception as e:
if isinstance(e, BedrockError):
raise
else:
raise BedrockError(f"Bedrock API error: {e}")
# Generic Bedrock completion function
async def bedrock_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
) -> Union[str, AsyncIterator[str]]:
kwargs.pop("keyword_extraction", None)
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
result = await bedrock_complete_if_cache(
@ -117,18 +245,19 @@ async def bedrock_embed(
aws_secret_access_key=None,
aws_session_token=None,
) -> np.ndarray:
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
"AWS_ACCESS_KEY_ID", aws_access_key_id
)
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
)
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
"AWS_SESSION_TOKEN", aws_session_token
)
# Respect existing env; only set if a non-empty value is available
access_key = os.environ.get("AWS_ACCESS_KEY_ID") or aws_access_key_id
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY") or aws_secret_access_key
session_token = os.environ.get("AWS_SESSION_TOKEN") or aws_session_token
_set_env_if_present("AWS_ACCESS_KEY_ID", access_key)
_set_env_if_present("AWS_SECRET_ACCESS_KEY", secret_key)
_set_env_if_present("AWS_SESSION_TOKEN", session_token)
# Region handling: prefer env
region = os.environ.get("AWS_REGION")
session = aioboto3.Session()
async with session.client("bedrock-runtime") as bedrock_async_client:
async with session.client("bedrock-runtime", region_name=region) as bedrock_async_client:
if (model_provider := model.split(".")[0]) == "amazon":
embed_texts = []
for text in texts:
@ -156,9 +285,7 @@ async def bedrock_embed(
embed_texts.append(response_body["embedding"])
elif model_provider == "cohere":
body = json.dumps(
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
)
body = json.dumps({"texts": texts, "input_type": "search_document", "truncate": "NONE"})
response = await bedrock_async_client.invoke_model(
model=model,