diff --git a/docs/rerank_integration.md b/docs/rerank_integration.md index 4e4d433f..0e6c5169 100644 --- a/docs/rerank_integration.md +++ b/docs/rerank_integration.md @@ -22,14 +22,14 @@ from lightrag import LightRAG, QueryParam from lightrag.rerank import custom_rerank, RerankModel # Method 1: Using a custom rerank function with all settings included -async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs): +async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs): return await custom_rerank( query=query, documents=documents, model="BAAI/bge-reranker-v2-m3", base_url="https://api.your-provider.com/v1/rerank", api_key="your_api_key_here", - top_k=top_k or 10, # Handle top_k within the function + top_n=top_n or 10, # Handle top_n within the function **kwargs ) @@ -95,7 +95,7 @@ result = await custom_rerank( model="BAAI/bge-reranker-v2-m3", base_url="https://api.your-provider.com/v1/rerank", api_key="your_api_key_here", - top_k=10 + top_n=10 ) ``` @@ -109,7 +109,7 @@ result = await jina_rerank( documents=documents, model="BAAI/bge-reranker-v2-m3", api_key="your_jina_api_key", - top_k=10 + top_n=10 ) ``` @@ -123,7 +123,7 @@ result = await cohere_rerank( documents=documents, model="rerank-english-v2.0", api_key="your_cohere_api_key", - top_k=10 + top_n=10 ) ``` @@ -141,7 +141,7 @@ Reranking is automatically applied at these key retrieval stages: | Parameter | Type | Default | Description | |-----------|------|---------|-------------| | `enable_rerank` | bool | False | Enable/disable reranking | -| `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys, top_k, etc.) | +| `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys, top_n, etc.) | ## Example Usage @@ -154,14 +154,14 @@ from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding from lightrag.kg.shared_storage import initialize_pipeline_status from lightrag.rerank import jina_rerank -async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs): +async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs): """Custom rerank function with all settings included""" return await jina_rerank( query=query, documents=documents, model="BAAI/bge-reranker-v2-m3", api_key="your_jina_api_key_here", - top_k=top_k or 10, # Default top_k if not provided + top_n=top_n or 10, # Default top_n if not provided **kwargs ) @@ -186,7 +186,7 @@ async def main(): # Query with rerank (automatically applied) result = await rag.aquery( "Your question here", - param=QueryParam(enable_rerank=True) # This top_k is passed to rerank function + param=QueryParam(enable_rerank=True) # This top_n is passed to rerank function ) print(result) @@ -212,7 +212,7 @@ async def test_rerank(): model="BAAI/bge-reranker-v2-m3", base_url="https://api.your-provider.com/v1/rerank", api_key="your_api_key_here", - top_k=2 + top_n=2 ) for doc in reranked: @@ -221,11 +221,11 @@ async def test_rerank(): ## Best Practices -1. **Self-Contained Functions**: Include all necessary configurations (API keys, models, top_k handling) within your rerank function +1. **Self-Contained Functions**: Include all necessary configurations (API keys, models, top_n handling) within your rerank function 2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff 3. **API Limits**: Monitor API usage and implement rate limiting within your rerank function 4. **Fallback**: Always handle rerank failures gracefully (returns original results) -5. **Top-k Handling**: Handle top_k parameter appropriately within your rerank function +5. **Top-n Handling**: Handle top_n parameter appropriately within your rerank function 6. **Cost Management**: Consider rerank API costs in your budget planning ## Troubleshooting