feat: Implement map-reduce summarization to handle large humber of description merging
This commit is contained in:
parent
0b1b264a5d
commit
882d6857d8
1 changed files with 180 additions and 88 deletions
|
|
@ -115,47 +115,152 @@ def chunking_by_token_size(
|
|||
|
||||
async def _handle_entity_relation_summary(
|
||||
entity_or_relation_name: str,
|
||||
description: str,
|
||||
description_list: list[str],
|
||||
force_llm_summary_on_merge: int,
|
||||
seperator: str,
|
||||
global_config: dict,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
) -> str:
|
||||
"""Handle entity relation summary
|
||||
For each entity or relation, input is the combined description of already existing description and new description.
|
||||
If too long, use LLM to summarize.
|
||||
"""Handle entity relation description summary using map-reduce approach.
|
||||
|
||||
This function summarizes a list of descriptions using a map-reduce strategy:
|
||||
1. If total tokens <= summary_max_tokens, summarize directly
|
||||
2. Otherwise, split descriptions into chunks that fit within token limits
|
||||
3. Summarize each chunk, then recursively process the summaries
|
||||
4. Continue until we get a final summary within token limits or num of descriptions is less than force_llm_summary_on_merge
|
||||
|
||||
Args:
|
||||
entity_or_relation_name: Name of the entity or relation being summarized
|
||||
description_list: List of description strings to summarize
|
||||
global_config: Global configuration containing tokenizer and limits
|
||||
llm_response_cache: Optional cache for LLM responses
|
||||
|
||||
Returns:
|
||||
Final summarized description string
|
||||
"""
|
||||
# Handle empty input
|
||||
if not description_list:
|
||||
return ""
|
||||
|
||||
# If only one description, return it directly (no need for LLM call)
|
||||
if len(description_list) == 1:
|
||||
return description_list[0]
|
||||
|
||||
# Get configuration
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
summary_max_tokens = global_config["summary_max_tokens"]
|
||||
|
||||
current_list = description_list[:] # Copy the list to avoid modifying original
|
||||
|
||||
# Iterative map-reduce process
|
||||
while True:
|
||||
# Calculate total tokens in current list
|
||||
total_tokens = sum(len(tokenizer.encode(desc)) for desc in current_list)
|
||||
|
||||
# If total length is within limits, perform final summarization
|
||||
if (
|
||||
total_tokens <= summary_max_tokens
|
||||
or len(current_list) < force_llm_summary_on_merge
|
||||
):
|
||||
if len(current_list) < force_llm_summary_on_merge:
|
||||
# Already the final result
|
||||
final_description = seperator.join(current_list)
|
||||
return final_description if final_description else ""
|
||||
else:
|
||||
# Final summarization of remaining descriptions
|
||||
return await _summarize_descriptions(
|
||||
entity_or_relation_name,
|
||||
current_list,
|
||||
global_config,
|
||||
llm_response_cache,
|
||||
)
|
||||
|
||||
# Need to split into chunks - Map phase
|
||||
chunks = []
|
||||
current_chunk = []
|
||||
current_tokens = 0
|
||||
|
||||
for desc in current_list:
|
||||
desc_tokens = len(tokenizer.encode(desc))
|
||||
|
||||
# If adding current description would exceed limit, finalize current chunk
|
||||
if current_tokens + desc_tokens > summary_max_tokens and current_chunk:
|
||||
chunks.append(current_chunk)
|
||||
current_chunk = [desc]
|
||||
current_tokens = desc_tokens
|
||||
else:
|
||||
current_chunk.append(desc)
|
||||
current_tokens += desc_tokens
|
||||
|
||||
# Add the last chunk if it exists
|
||||
if current_chunk:
|
||||
chunks.append(current_chunk)
|
||||
|
||||
logger.info(
|
||||
f"Summarizing {entity_or_relation_name}: split {len(current_list)} descriptions into {len(chunks)} groups"
|
||||
)
|
||||
|
||||
# Reduce phase: summarize each chunk
|
||||
new_summaries = []
|
||||
for chunk in chunks:
|
||||
if len(chunk) == 1:
|
||||
# Optimization: single description chunks don't need LLM summarization
|
||||
new_summaries.append(chunk[0])
|
||||
else:
|
||||
# Multiple descriptions need LLM summarization
|
||||
summary = await _summarize_descriptions(
|
||||
entity_or_relation_name, chunk, global_config, llm_response_cache
|
||||
)
|
||||
new_summaries.append(summary)
|
||||
|
||||
# Update current list with new summaries for next iteration
|
||||
current_list = new_summaries
|
||||
|
||||
|
||||
async def _summarize_descriptions(
|
||||
entity_or_relation_name: str,
|
||||
description_list: list[str],
|
||||
global_config: dict,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
) -> str:
|
||||
"""Helper function to summarize a list of descriptions using LLM.
|
||||
|
||||
Args:
|
||||
entity_or_relation_name: Name of the entity or relation being summarized
|
||||
descriptions: List of description strings to summarize
|
||||
global_config: Global configuration containing LLM function and settings
|
||||
llm_response_cache: Optional cache for LLM responses
|
||||
|
||||
Returns:
|
||||
Summarized description string
|
||||
"""
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
# Apply higher priority (8) to entity/relation summary tasks
|
||||
use_llm_func = partial(use_llm_func, _priority=8)
|
||||
|
||||
tokenizer: Tokenizer = global_config["tokenizer"]
|
||||
llm_max_tokens = global_config["summary_max_tokens"]
|
||||
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
|
||||
tokens = tokenizer.encode(description)
|
||||
|
||||
### summarize is not determined here anymore (It's determined by num_fragment now)
|
||||
# if len(tokens) < summary_max_tokens: # No need for summary
|
||||
# return description
|
||||
|
||||
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
||||
use_description = tokenizer.decode(tokens[:llm_max_tokens])
|
||||
|
||||
# Prepare context for the prompt
|
||||
context_base = dict(
|
||||
entity_name=entity_or_relation_name,
|
||||
description_list=use_description.split(GRAPH_FIELD_SEP),
|
||||
description_list="\n".join(description_list),
|
||||
language=language,
|
||||
)
|
||||
use_prompt = prompt_template.format(**context_base)
|
||||
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
||||
|
||||
logger.debug(
|
||||
f"Summarizing {len(description_list)} descriptions for: {entity_or_relation_name}"
|
||||
)
|
||||
|
||||
# Use LLM function with cache (higher priority for summary generation)
|
||||
summary = await use_llm_func_with_cache(
|
||||
use_prompt,
|
||||
use_llm_func,
|
||||
llm_response_cache=llm_response_cache,
|
||||
# max_tokens=summary_max_tokens,
|
||||
cache_type="extract",
|
||||
)
|
||||
return summary
|
||||
|
|
@ -413,7 +518,7 @@ async def _rebuild_knowledge_from_chunks(
|
|||
)
|
||||
rebuilt_entities_count += 1
|
||||
status_message = (
|
||||
f"Rebuilt entity: {entity_name} from {len(chunk_ids)} chunks"
|
||||
f"Entity `{entity_name}` rebuilt from {len(chunk_ids)} chunks"
|
||||
)
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
|
|
@ -453,7 +558,7 @@ async def _rebuild_knowledge_from_chunks(
|
|||
global_config=global_config,
|
||||
)
|
||||
rebuilt_relationships_count += 1
|
||||
status_message = f"Rebuilt relationship: {src}->{tgt} from {len(chunk_ids)} chunks"
|
||||
status_message = f"Relationship `{src}->{tgt}` rebuilt from {len(chunk_ids)} chunks"
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
|
|
@ -736,21 +841,20 @@ async def _rebuild_single_entity(
|
|||
edge_file_paths = edge_data["file_path"].split(GRAPH_FIELD_SEP)
|
||||
file_paths.update(edge_file_paths)
|
||||
|
||||
# Generate description from relationships or fallback to current
|
||||
if relationship_descriptions:
|
||||
combined_description = GRAPH_FIELD_SEP.join(relationship_descriptions)
|
||||
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||
num_fragment = combined_description.count(GRAPH_FIELD_SEP) + 1
|
||||
# deduplicate descriptions
|
||||
description_list = list(dict.fromkeys(relationship_descriptions))
|
||||
|
||||
if num_fragment >= force_llm_summary_on_merge:
|
||||
final_description = await _handle_entity_relation_summary(
|
||||
entity_name,
|
||||
combined_description,
|
||||
global_config,
|
||||
llm_response_cache=llm_response_cache,
|
||||
)
|
||||
else:
|
||||
final_description = combined_description
|
||||
# Generate description from relationships or fallback to current
|
||||
if description_list:
|
||||
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||
final_description = await _handle_entity_relation_summary(
|
||||
entity_name,
|
||||
description_list,
|
||||
force_llm_summary_on_merge,
|
||||
GRAPH_FIELD_SEP,
|
||||
global_config,
|
||||
llm_response_cache=llm_response_cache,
|
||||
)
|
||||
else:
|
||||
final_description = current_entity.get("description", "")
|
||||
|
||||
|
|
@ -772,16 +876,9 @@ async def _rebuild_single_entity(
|
|||
file_paths.add(entity_data["file_path"])
|
||||
|
||||
# Remove duplicates while preserving order
|
||||
descriptions = list(dict.fromkeys(descriptions))
|
||||
description_list = list(dict.fromkeys(descriptions))
|
||||
entity_types = list(dict.fromkeys(entity_types))
|
||||
|
||||
# Combine all descriptions
|
||||
combined_description = (
|
||||
GRAPH_FIELD_SEP.join(descriptions)
|
||||
if descriptions
|
||||
else current_entity.get("description", "")
|
||||
)
|
||||
|
||||
# Get most common entity type
|
||||
entity_type = (
|
||||
max(set(entity_types), key=entity_types.count)
|
||||
|
|
@ -791,17 +888,17 @@ async def _rebuild_single_entity(
|
|||
|
||||
# Generate final description and update storage
|
||||
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||
num_fragment = combined_description.count(GRAPH_FIELD_SEP) + 1
|
||||
|
||||
if num_fragment >= force_llm_summary_on_merge:
|
||||
if description_list:
|
||||
final_description = await _handle_entity_relation_summary(
|
||||
entity_name,
|
||||
combined_description,
|
||||
description_list,
|
||||
force_llm_summary_on_merge,
|
||||
GRAPH_FIELD_SEP,
|
||||
global_config,
|
||||
llm_response_cache=llm_response_cache,
|
||||
)
|
||||
else:
|
||||
final_description = combined_description
|
||||
final_description = current_entity.get("description", "")
|
||||
|
||||
await _update_entity_storage(final_description, entity_type, file_paths)
|
||||
|
||||
|
|
@ -859,45 +956,38 @@ async def _rebuild_single_relationship(
|
|||
file_paths.add(rel_data["file_path"])
|
||||
|
||||
# Remove duplicates while preserving order
|
||||
descriptions = list(dict.fromkeys(descriptions))
|
||||
description_list = list(dict.fromkeys(descriptions))
|
||||
keywords = list(dict.fromkeys(keywords))
|
||||
|
||||
# Combine descriptions and keywords (fallback to keep currunt unchanged)
|
||||
combined_description = (
|
||||
GRAPH_FIELD_SEP.join(descriptions)
|
||||
if descriptions
|
||||
else current_relationship.get("description", "")
|
||||
)
|
||||
combined_keywords = (
|
||||
", ".join(set(keywords))
|
||||
if keywords
|
||||
else current_relationship.get("keywords", "")
|
||||
)
|
||||
# weight = (
|
||||
# sum(weights) / len(weights)
|
||||
# if weights
|
||||
# else current_relationship.get("weight", 1.0)
|
||||
# )
|
||||
|
||||
weight = sum(weights) if weights else current_relationship.get("weight", 1.0)
|
||||
|
||||
# Use summary if description has too many fragments
|
||||
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||
num_fragment = combined_description.count(GRAPH_FIELD_SEP) + 1
|
||||
|
||||
if num_fragment >= force_llm_summary_on_merge:
|
||||
if description_list:
|
||||
final_description = await _handle_entity_relation_summary(
|
||||
f"{src}-{tgt}",
|
||||
combined_description,
|
||||
description_list,
|
||||
force_llm_summary_on_merge,
|
||||
GRAPH_FIELD_SEP,
|
||||
global_config,
|
||||
llm_response_cache=llm_response_cache,
|
||||
)
|
||||
else:
|
||||
final_description = combined_description
|
||||
# fallback to keep current(unchanged)
|
||||
final_description = current_relationship.get("description", "")
|
||||
|
||||
# Update relationship in graph storage
|
||||
updated_relationship_data = {
|
||||
**current_relationship,
|
||||
"description": final_description,
|
||||
"description": final_description
|
||||
if final_description
|
||||
else current_relationship.get("description", ""),
|
||||
"keywords": combined_keywords,
|
||||
"weight": weight,
|
||||
"source_id": GRAPH_FIELD_SEP.join(chunk_ids),
|
||||
|
|
@ -971,21 +1061,16 @@ async def _merge_nodes_then_upsert(
|
|||
reverse=True,
|
||||
)[0][0]
|
||||
|
||||
description = GRAPH_FIELD_SEP.join(
|
||||
already_description
|
||||
+ list(
|
||||
dict.fromkeys(
|
||||
[dp["description"] for dp in nodes_data if dp.get("description")]
|
||||
)
|
||||
)
|
||||
description_list = already_description + list(
|
||||
dict.fromkeys([dp["description"] for dp in nodes_data if dp.get("description")])
|
||||
)
|
||||
|
||||
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
|
||||
num_fragment = len(description_list)
|
||||
already_fragment = already_description.count(GRAPH_FIELD_SEP) + 1
|
||||
if num_fragment > 1:
|
||||
if num_fragment > 0:
|
||||
if num_fragment >= force_llm_summary_on_merge:
|
||||
status_message = f"LLM merge N: {entity_name} | {already_fragment}+{num_fragment-already_fragment}"
|
||||
status_message = f"LLM merging `{entity_name}` | {already_fragment}+{num_fragment-already_fragment}"
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
|
|
@ -993,17 +1078,23 @@ async def _merge_nodes_then_upsert(
|
|||
pipeline_status["history_messages"].append(status_message)
|
||||
description = await _handle_entity_relation_summary(
|
||||
entity_name,
|
||||
description,
|
||||
description_list,
|
||||
force_llm_summary_on_merge,
|
||||
GRAPH_FIELD_SEP,
|
||||
global_config,
|
||||
llm_response_cache,
|
||||
)
|
||||
else:
|
||||
status_message = f"Merge N: {entity_name} | {already_fragment}+{num_fragment-already_fragment}"
|
||||
status_message = f"Merging `{entity_name}` | {already_fragment}+{num_fragment-already_fragment}"
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
description = GRAPH_FIELD_SEP.join(description_list)
|
||||
else:
|
||||
logger.error(f"Entity {entity_name} has no description")
|
||||
description = "(no description)"
|
||||
|
||||
source_id = GRAPH_FIELD_SEP.join(
|
||||
set([dp["source_id"] for dp in nodes_data] + already_source_ids)
|
||||
|
|
@ -1084,21 +1175,16 @@ async def _merge_edges_then_upsert(
|
|||
# Process edges_data with None checks
|
||||
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
|
||||
|
||||
description = GRAPH_FIELD_SEP.join(
|
||||
already_description
|
||||
+ list(
|
||||
dict.fromkeys(
|
||||
[dp["description"] for dp in edges_data if dp.get("description")]
|
||||
)
|
||||
)
|
||||
description_list = already_description + list(
|
||||
dict.fromkeys([dp["description"] for dp in edges_data if dp.get("description")])
|
||||
)
|
||||
|
||||
force_llm_summary_on_merge = global_config["force_llm_summary_on_merge"]
|
||||
num_fragment = description.count(GRAPH_FIELD_SEP) + 1
|
||||
num_fragment = len(description_list)
|
||||
already_fragment = already_description.count(GRAPH_FIELD_SEP) + 1
|
||||
if num_fragment > 1:
|
||||
if num_fragment > 0:
|
||||
if num_fragment >= force_llm_summary_on_merge:
|
||||
status_message = f"LLM merge E: {src_id} - {tgt_id} | {already_fragment}+{num_fragment-already_fragment}"
|
||||
status_message = f"LLM merging `{src_id} - {tgt_id}` | {already_fragment}+{num_fragment-already_fragment}"
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
|
|
@ -1106,17 +1192,23 @@ async def _merge_edges_then_upsert(
|
|||
pipeline_status["history_messages"].append(status_message)
|
||||
description = await _handle_entity_relation_summary(
|
||||
f"({src_id}, {tgt_id})",
|
||||
description,
|
||||
description_list,
|
||||
force_llm_summary_on_merge,
|
||||
GRAPH_FIELD_SEP,
|
||||
global_config,
|
||||
llm_response_cache,
|
||||
)
|
||||
else:
|
||||
status_message = f"Merge E: {src_id} - {tgt_id} | {already_fragment}+{num_fragment-already_fragment}"
|
||||
status_message = f"Merging `{src_id} - {tgt_id}` | {already_fragment}+{num_fragment-already_fragment}"
|
||||
logger.info(status_message)
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
description = GRAPH_FIELD_SEP.join(description_list)
|
||||
else:
|
||||
logger.error(f"Edge {src_id} - {tgt_id} has no description")
|
||||
description = "(no description)"
|
||||
|
||||
# Split all existing and new keywords into individual terms, then combine and deduplicate
|
||||
all_keywords = set()
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue