feat: remove unused parameter from query methods across multiple implementations

This commit is contained in:
Matt23-star 2025-08-20 15:59:05 +08:00
parent 60564cf453
commit 874ddda605
9 changed files with 29 additions and 84 deletions

View file

@ -219,7 +219,7 @@ class BaseVectorStorage(StorageNameSpace, ABC):
@abstractmethod
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
"""Query the vector storage and retrieve top_k results."""

View file

@ -165,7 +165,7 @@ class ChromaVectorDBStorage(BaseVectorStorage):
raise
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
try:
embedding = await self.embedding_func(

View file

@ -180,7 +180,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
return [m["__id__"] for m in list_data]
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
"""
Search by a textual query; returns top_k results with their metadata + similarity distance.

View file

@ -810,7 +810,7 @@ class MilvusVectorDBStorage(BaseVectorStorage):
return results
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
# Ensure collection is loaded before querying
self._ensure_collection_loaded()

View file

@ -1771,7 +1771,7 @@ class MongoVectorDBStorage(BaseVectorStorage):
return list_data
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
"""Queries the vector database using Atlas Vector Search."""
# Generate the embedding

View file

@ -137,7 +137,7 @@ class NanoVectorDBStorage(BaseVectorStorage):
)
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
# Execute embedding outside of lock to avoid improve cocurrent
embedding = await self.embedding_func(

View file

@ -2005,7 +2005,7 @@ class PGVectorStorage(BaseVectorStorage):
#################### query method ###############
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
embeddings = await self.embedding_func(
[query], _priority=5
@ -2016,7 +2016,6 @@ class PGVectorStorage(BaseVectorStorage):
sql = SQL_TEMPLATES[self.namespace].format(embedding_string=embedding_string)
params = {
"workspace": self.workspace,
"doc_ids": ids,
"closer_than_threshold": 1 - self.cosine_better_than_threshold,
"top_k": top_k,
}
@ -4578,85 +4577,31 @@ SQL_TEMPLATES = {
update_time = EXCLUDED.update_time
""",
"relationships": """
WITH relevant_chunks AS (SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2
:: varchar [] IS NULL OR full_doc_id = ANY ($2:: varchar [])
)
, rc AS (
SELECT array_agg(chunk_id) AS chunk_arr
FROM relevant_chunks
), cand AS (
SELECT
r.id, r.source_id AS src_id, r.target_id AS tgt_id, r.chunk_ids, r.create_time, r.content_vector <=> '[{embedding_string}]'::vector AS dist
FROM LIGHTRAG_VDB_RELATION r
WHERE r.workspace = $1
ORDER BY r.content_vector <=> '[{embedding_string}]'::vector
LIMIT ($4 * 50)
)
SELECT c.src_id,
c.tgt_id,
EXTRACT(EPOCH FROM c.create_time) ::BIGINT AS created_at
FROM cand c
JOIN rc ON TRUE
WHERE c.dist < $3
AND c.chunk_ids && (rc.chunk_arr::varchar[])
ORDER BY c.dist, c.id
LIMIT $4;
SELECT r.source_id as src_id, r.target_id as tgt_id,
EXTRACT(EPOCH FROM r.create_time)::BIGINT as created_at
FROM LIGHTRAG_VDB_RELATION r
WHERE r.workspace = $1
AND r.content_vector <=> '[{embedding_string}]'::vector < $2
ORDER BY r.content_vector <=> '[{embedding_string}]'::vector
LIMIT $3
""",
"entities": """
WITH relevant_chunks AS (SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2
:: varchar [] IS NULL OR full_doc_id = ANY ($2:: varchar [])
)
, rc AS (
SELECT array_agg(chunk_id) AS chunk_arr
FROM relevant_chunks
), cand AS (
SELECT
e.id, e.entity_name, e.chunk_ids, e.create_time, e.content_vector <=> '[{embedding_string}]'::vector AS dist
SELECT e.entity_name,
EXTRACT(EPOCH FROM e.create_time)::BIGINT as created_at
FROM LIGHTRAG_VDB_ENTITY e
WHERE e.workspace = $1
AND e.content_vector <=> '[{embedding_string}]'::vector < $2
ORDER BY e.content_vector <=> '[{embedding_string}]'::vector
LIMIT ($4 * 50)
)
SELECT c.entity_name,
EXTRACT(EPOCH FROM c.create_time) ::BIGINT AS created_at
FROM cand c
JOIN rc ON TRUE
WHERE c.dist < $3
AND c.chunk_ids && (rc.chunk_arr::varchar[])
ORDER BY c.dist, c.id
LIMIT $4;
LIMIT $3
""",
"chunks": """
WITH relevant_chunks AS (SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2
:: varchar [] IS NULL OR full_doc_id = ANY ($2:: varchar [])
)
, rc AS (
SELECT array_agg(chunk_id) AS chunk_arr
FROM relevant_chunks
), cand AS (
SELECT
id, content, file_path, create_time, content_vector <=> '[{embedding_string}]'::vector AS dist
FROM LIGHTRAG_VDB_CHUNKS
WHERE workspace = $1
ORDER BY content_vector <=> '[{embedding_string}]'::vector
LIMIT ($4 * 50)
)
SELECT c.id,
c.content,
c.file_path,
EXTRACT(EPOCH FROM c.create_time) ::BIGINT AS created_at
FROM cand c
JOIN rc ON TRUE
WHERE c.dist < $3
AND c.id = ANY (rc.chunk_arr)
ORDER BY c.dist, c.id
LIMIT $4;
SELECT id, content, file_path,
EXTRACT(EPOCH FROM create_time)::BIGINT as created_at
FROM LIGHTRAG_VDB_CHUNKS
WHERE workspace = $1
AND content_vector <=> '[{embedding_string}]'::vector < $2
ORDER BY content_vector <=> '[{embedding_string}]'::vector
LIMIT $3
""",
# DROP tables
"drop_specifiy_table_workspace": """

View file

@ -200,7 +200,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
return results
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int
) -> list[dict[str, Any]]:
embedding = await self.embedding_func(
[query], _priority=5

View file

@ -2055,7 +2055,7 @@ async def _get_vector_context(
# Use chunk_top_k if specified, otherwise fall back to top_k
search_top_k = query_param.chunk_top_k or query_param.top_k
results = await chunks_vdb.query(query, top_k=search_top_k, ids=query_param.ids)
results = await chunks_vdb.query(query, top_k=search_top_k)
if not results:
return []
@ -2599,7 +2599,7 @@ async def _get_node_data(
)
results = await entities_vdb.query(
query, top_k=query_param.top_k, ids=query_param.ids
query, top_k=query_param.top_k
)
if not len(results):
@ -2875,7 +2875,7 @@ async def _get_edge_data(
)
results = await relationships_vdb.query(
keywords, top_k=query_param.top_k, ids=query_param.ids
keywords, top_k=query_param.top_k
)
if not len(results):