Add Memgraph into README.md

This commit is contained in:
DavIvek 2025-06-26 16:26:51 +02:00
parent 0d6bd3bac2
commit 80d4d5b0d5

View file

@ -854,6 +854,41 @@ rag = LightRAG(
</details>
<details>
<summary> <b>Using Memgraph for Storage</b> </summary>
* Memgraph is a high-performance, in-memory graph database compatible with the Neo4j Bolt protocol.
* You can run Memgraph locally using Docker for easy testing:
* See: https://memgraph.com/download
```python
export MEMGRAPH_URI="bolt://localhost:7687"
# Setup logger for LightRAG
setup_logger("lightrag", level="INFO")
# When you launch the project, override the default KG: NetworkX
# by specifying kg="MemgraphStorage".
# Note: Default settings use NetworkX
# Initialize LightRAG with Memgraph implementation.
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
graph_storage="MemgraphStorage", #<-----------override KG default
)
# Initialize database connections
await rag.initialize_storages()
# Initialize pipeline status for document processing
await initialize_pipeline_status()
return rag
```
</details>
## Edit Entities and Relations
LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.