Optimize JSON string sanitization with precompiled regex and zero-copy
- Precompile regex pattern at module level - Zero-copy path for clean strings - Use C-level regex for performance - Remove deprecated _sanitize_json_data - Fast detection for common case
This commit is contained in:
parent
f289cf6225
commit
7f54f47093
1 changed files with 11 additions and 54 deletions
|
|
@ -56,6 +56,9 @@ if not logger.handlers:
|
|||
# Set httpx logging level to WARNING
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
|
||||
# Precompile regex pattern for JSON sanitization (module-level, compiled once)
|
||||
_SURROGATE_PATTERN = re.compile(r"[\uD800-\uDFFF\uFFFE\uFFFF]")
|
||||
|
||||
# Global import for pypinyin with startup-time logging
|
||||
try:
|
||||
import pypinyin
|
||||
|
|
@ -930,70 +933,24 @@ def load_json(file_name):
|
|||
def _sanitize_string_for_json(text: str) -> str:
|
||||
"""Remove characters that cannot be encoded in UTF-8 for JSON serialization.
|
||||
|
||||
This is a simpler sanitizer specifically for JSON that directly removes
|
||||
problematic characters without attempting to encode first.
|
||||
Uses regex for optimal performance with zero-copy optimization for clean strings.
|
||||
Fast detection path for clean strings (99% of cases) with efficient removal for dirty strings.
|
||||
|
||||
Args:
|
||||
text: String to sanitize
|
||||
|
||||
Returns:
|
||||
Sanitized string safe for UTF-8 encoding in JSON
|
||||
Original string if clean (zero-copy), sanitized string if dirty
|
||||
"""
|
||||
if not text:
|
||||
return text
|
||||
|
||||
# Directly filter out problematic characters without pre-validation
|
||||
sanitized = ""
|
||||
for char in text:
|
||||
code_point = ord(char)
|
||||
# Skip surrogate characters (U+D800 to U+DFFF) - main cause of encoding errors
|
||||
if 0xD800 <= code_point <= 0xDFFF:
|
||||
continue
|
||||
# Skip other non-characters in Unicode
|
||||
elif code_point == 0xFFFE or code_point == 0xFFFF:
|
||||
continue
|
||||
else:
|
||||
sanitized += char
|
||||
# Fast path: Check if sanitization is needed using C-level regex search
|
||||
if not _SURROGATE_PATTERN.search(text):
|
||||
return text # Zero-copy for clean strings - most common case
|
||||
|
||||
return sanitized
|
||||
|
||||
|
||||
def _sanitize_json_data(data: Any) -> Any:
|
||||
"""Recursively sanitize all string values in data structure for safe UTF-8 encoding
|
||||
|
||||
DEPRECATED: This function creates a deep copy of the data which can be memory-intensive.
|
||||
For new code, prefer using write_json with SanitizingJSONEncoder which sanitizes during
|
||||
serialization without creating copies.
|
||||
|
||||
Handles all JSON-serializable types including:
|
||||
- Dictionary keys and values
|
||||
- Lists and tuples (preserves type)
|
||||
- Nested structures
|
||||
- Strings at any level
|
||||
|
||||
Args:
|
||||
data: Data to sanitize (dict, list, tuple, str, or other types)
|
||||
|
||||
Returns:
|
||||
Sanitized data with all strings cleaned of problematic characters
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
# Sanitize both keys and values
|
||||
return {
|
||||
_sanitize_string_for_json(k)
|
||||
if isinstance(k, str)
|
||||
else k: _sanitize_json_data(v)
|
||||
for k, v in data.items()
|
||||
}
|
||||
elif isinstance(data, (list, tuple)):
|
||||
# Handle both lists and tuples, preserve original type
|
||||
sanitized = [_sanitize_json_data(item) for item in data]
|
||||
return type(data)(sanitized)
|
||||
elif isinstance(data, str):
|
||||
return _sanitize_string_for_json(data)
|
||||
else:
|
||||
# Numbers, booleans, None, etc. - return as-is
|
||||
return data
|
||||
# Slow path: Remove problematic characters using C-level regex substitution
|
||||
return _SURROGATE_PATTERN.sub("", text)
|
||||
|
||||
|
||||
class SanitizingJSONEncoder(json.JSONEncoder):
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue