diff --git a/lightrag/llm/openai.py b/lightrag/llm/openai.py
index 704edc8c..1e840d08 100644
--- a/lightrag/llm/openai.py
+++ b/lightrag/llm/openai.py
@@ -11,7 +11,6 @@ if not pm.is_installed("openai"):
pm.install("openai")
from openai import (
- AsyncOpenAI,
APIConnectionError,
RateLimitError,
APITimeoutError,
@@ -28,18 +27,6 @@ from lightrag.utils import (
logger,
)
-# Try to import Langfuse for LLM observability (optional)
-# Falls back to standard OpenAI client if not available
-try:
- from langfuse.openai import AsyncOpenAI
-
- LANGFUSE_ENABLED = True
- logger.info("Langfuse observability enabled for OpenAI client")
-except ImportError:
- from openai import AsyncOpenAI
-
- LANGFUSE_ENABLED = False
- logger.debug("Langfuse not available, using standard OpenAI client")
from lightrag.types import GPTKeywordExtractionFormat
from lightrag.api import __api_version__
@@ -49,6 +36,32 @@ from typing import Any, Union
from dotenv import load_dotenv
+# Try to import Langfuse for LLM observability (optional)
+# Falls back to standard OpenAI client if not available
+# Langfuse requires proper configuration to work correctly
+LANGFUSE_ENABLED = False
+try:
+ # Check if required Langfuse environment variables are set
+ langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY")
+ langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY")
+
+ # Only enable Langfuse if both keys are configured
+ if langfuse_public_key and langfuse_secret_key:
+ from langfuse.openai import AsyncOpenAI # type: ignore[import-untyped]
+
+ LANGFUSE_ENABLED = True
+ logger.info("Langfuse observability enabled for OpenAI client")
+ else:
+ from openai import AsyncOpenAI
+
+ logger.debug(
+ "Langfuse environment variables not configured, using standard OpenAI client"
+ )
+except ImportError:
+ from openai import AsyncOpenAI
+
+ logger.debug("Langfuse not available, using standard OpenAI client")
+
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
@@ -64,46 +77,73 @@ class InvalidResponseError(Exception):
def create_openai_async_client(
api_key: str | None = None,
base_url: str | None = None,
+ use_azure: bool = False,
+ azure_deployment: str | None = None,
+ api_version: str | None = None,
+ timeout: int | None = None,
client_configs: dict[str, Any] | None = None,
) -> AsyncOpenAI:
- """Create an AsyncOpenAI client with the given configuration.
+ """Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration.
Args:
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
+ use_azure: Whether to create an Azure OpenAI client. Default is False.
+ azure_deployment: Azure OpenAI deployment name (only used when use_azure=True).
+ api_version: Azure OpenAI API version (only used when use_azure=True).
+ timeout: Request timeout in seconds.
client_configs: Additional configuration options for the AsyncOpenAI client.
These will override any default configurations but will be overridden by
explicit parameters (api_key, base_url).
Returns:
- An AsyncOpenAI client instance.
+ An AsyncOpenAI or AsyncAzureOpenAI client instance.
"""
- if not api_key:
- api_key = os.environ["OPENAI_API_KEY"]
+ if use_azure:
+ from openai import AsyncAzureOpenAI
- default_headers = {
- "User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
- "Content-Type": "application/json",
- }
+ if not api_key:
+ api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get(
+ "LLM_BINDING_API_KEY"
+ )
- if client_configs is None:
- client_configs = {}
-
- # Create a merged config dict with precedence: explicit params > client_configs > defaults
- merged_configs = {
- **client_configs,
- "default_headers": default_headers,
- "api_key": api_key,
- }
-
- if base_url is not None:
- merged_configs["base_url"] = base_url
- else:
- merged_configs["base_url"] = os.environ.get(
- "OPENAI_API_BASE", "https://api.openai.com/v1"
+ return AsyncAzureOpenAI(
+ azure_endpoint=base_url,
+ azure_deployment=azure_deployment,
+ api_key=api_key,
+ api_version=api_version,
+ timeout=timeout,
)
+ else:
+ if not api_key:
+ api_key = os.environ["OPENAI_API_KEY"]
- return AsyncOpenAI(**merged_configs)
+ default_headers = {
+ "User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
+ "Content-Type": "application/json",
+ }
+
+ if client_configs is None:
+ client_configs = {}
+
+ # Create a merged config dict with precedence: explicit params > client_configs > defaults
+ merged_configs = {
+ **client_configs,
+ "default_headers": default_headers,
+ "api_key": api_key,
+ }
+
+ if base_url is not None:
+ merged_configs["base_url"] = base_url
+ else:
+ merged_configs["base_url"] = os.environ.get(
+ "OPENAI_API_BASE", "https://api.openai.com/v1"
+ )
+
+ if timeout is not None:
+ merged_configs["timeout"] = timeout
+
+ return AsyncOpenAI(**merged_configs)
@retry(
@@ -125,6 +165,12 @@ async def openai_complete_if_cache(
base_url: str | None = None,
api_key: str | None = None,
token_tracker: Any | None = None,
+ stream: bool | None = None,
+ timeout: int | None = None,
+ keyword_extraction: bool = False,
+ use_azure: bool = False,
+ azure_deployment: str | None = None,
+ api_version: str | None = None,
**kwargs: Any,
) -> str:
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
@@ -154,13 +200,15 @@ async def openai_complete_if_cache(
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
token_tracker: Optional token usage tracker for monitoring API usage.
enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False.
+ stream: Whether to stream the response. Default is False.
+ timeout: Request timeout in seconds. Default is None.
+ keyword_extraction: Whether to enable keyword extraction mode. When True, triggers
+ special response formatting for keyword extraction. Default is False.
**kwargs: Additional keyword arguments to pass to the OpenAI API.
Special kwargs:
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
These will be passed to the client constructor but will be overridden by
explicit parameters (api_key, base_url).
- - hashing_kv: Will be removed from kwargs before passing to OpenAI.
- - keyword_extraction: Will be removed from kwargs before passing to OpenAI.
Returns:
The completed text (with integrated COT content if available) or an async iterator
@@ -181,15 +229,22 @@ async def openai_complete_if_cache(
# Remove special kwargs that shouldn't be passed to OpenAI
kwargs.pop("hashing_kv", None)
- kwargs.pop("keyword_extraction", None)
# Extract client configuration options
client_configs = kwargs.pop("openai_client_configs", {})
- # Create the OpenAI client
+ # Handle keyword extraction mode
+ if keyword_extraction:
+ kwargs["response_format"] = GPTKeywordExtractionFormat
+
+ # Create the OpenAI client (supports both OpenAI and Azure)
openai_async_client = create_openai_async_client(
api_key=api_key,
base_url=base_url,
+ use_azure=use_azure,
+ azure_deployment=azure_deployment,
+ api_version=api_version,
+ timeout=timeout,
client_configs=client_configs,
)
@@ -211,10 +266,16 @@ async def openai_complete_if_cache(
messages = kwargs.pop("messages", messages)
+ # Add explicit parameters back to kwargs so they're passed to OpenAI API
+ if stream is not None:
+ kwargs["stream"] = stream
+ if timeout is not None:
+ kwargs["timeout"] = timeout
+
try:
# Don't use async with context manager, use client directly
if "response_format" in kwargs:
- response = await openai_async_client.beta.chat.completions.parse(
+ response = await openai_async_client.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
@@ -383,18 +444,23 @@ async def openai_complete_if_cache(
)
# Ensure resources are released even if no exception occurs
- if (
- iteration_started
- and hasattr(response, "aclose")
- and callable(getattr(response, "aclose", None))
- ):
- try:
- await response.aclose()
- logger.debug("Successfully closed stream response")
- except Exception as close_error:
- logger.warning(
- f"Failed to close stream response in finally block: {close_error}"
- )
+ # Note: Some wrapped clients (e.g., Langfuse) may not implement aclose() properly
+ if iteration_started and hasattr(response, "aclose"):
+ aclose_method = getattr(response, "aclose", None)
+ if callable(aclose_method):
+ try:
+ await response.aclose()
+ logger.debug("Successfully closed stream response")
+ except (AttributeError, TypeError) as close_error:
+ # Some wrapper objects may report hasattr(aclose) but fail when called
+ # This is expected behavior for certain client wrappers
+ logger.debug(
+ f"Stream response cleanup not supported by client wrapper: {close_error}"
+ )
+ except Exception as close_error:
+ logger.warning(
+ f"Unexpected error during stream response cleanup: {close_error}"
+ )
# This prevents resource leaks since the caller doesn't handle closing
try:
@@ -421,46 +487,57 @@ async def openai_complete_if_cache(
raise InvalidResponseError("Invalid response from OpenAI API")
message = response.choices[0].message
- content = getattr(message, "content", None)
- reasoning_content = getattr(message, "reasoning_content", "")
- # Handle COT logic for non-streaming responses (only if enabled)
- final_content = ""
+ # Handle parsed responses (structured output via response_format)
+ # When using beta.chat.completions.parse(), the response is in message.parsed
+ if hasattr(message, "parsed") and message.parsed is not None:
+ # Serialize the parsed structured response to JSON
+ final_content = message.parsed.model_dump_json()
+ logger.debug("Using parsed structured response from API")
+ else:
+ # Handle regular content responses
+ content = getattr(message, "content", None)
+ reasoning_content = getattr(message, "reasoning_content", "")
- if enable_cot:
- # Check if we should include reasoning content
- should_include_reasoning = False
- if reasoning_content and reasoning_content.strip():
- if not content or content.strip() == "":
- # Case 1: Only reasoning content, should include COT
- should_include_reasoning = True
- final_content = (
- content or ""
- ) # Use empty string if content is None
+ # Handle COT logic for non-streaming responses (only if enabled)
+ final_content = ""
+
+ if enable_cot:
+ # Check if we should include reasoning content
+ should_include_reasoning = False
+ if reasoning_content and reasoning_content.strip():
+ if not content or content.strip() == "":
+ # Case 1: Only reasoning content, should include COT
+ should_include_reasoning = True
+ final_content = (
+ content or ""
+ ) # Use empty string if content is None
+ else:
+ # Case 3: Both content and reasoning_content present, ignore reasoning
+ should_include_reasoning = False
+ final_content = content
else:
- # Case 3: Both content and reasoning_content present, ignore reasoning
- should_include_reasoning = False
- final_content = content
+ # No reasoning content, use regular content
+ final_content = content or ""
+
+ # Apply COT wrapping if needed
+ if should_include_reasoning:
+ if r"\u" in reasoning_content:
+ reasoning_content = safe_unicode_decode(
+ reasoning_content.encode("utf-8")
+ )
+ final_content = (
+ f"{reasoning_content}{final_content}"
+ )
else:
- # No reasoning content, use regular content
+ # COT disabled, only use regular content
final_content = content or ""
- # Apply COT wrapping if needed
- if should_include_reasoning:
- if r"\u" in reasoning_content:
- reasoning_content = safe_unicode_decode(
- reasoning_content.encode("utf-8")
- )
- final_content = f"{reasoning_content}{final_content}"
- else:
- # COT disabled, only use regular content
- final_content = content or ""
-
- # Validate final content
- if not final_content or final_content.strip() == "":
- logger.error("Received empty content from OpenAI API")
- await openai_async_client.close() # Ensure client is closed
- raise InvalidResponseError("Received empty content from OpenAI API")
+ # Validate final content
+ if not final_content or final_content.strip() == "":
+ logger.error("Received empty content from OpenAI API")
+ await openai_async_client.close() # Ensure client is closed
+ raise InvalidResponseError("Received empty content from OpenAI API")
# Apply Unicode decoding to final content if needed
if r"\u" in final_content:
@@ -494,15 +571,13 @@ async def openai_complete(
) -> Union[str, AsyncIterator[str]]:
if history_messages is None:
history_messages = []
- keyword_extraction = kwargs.pop("keyword_extraction", None)
- if keyword_extraction:
- kwargs["response_format"] = "json"
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await openai_complete_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
+ keyword_extraction=keyword_extraction,
**kwargs,
)
@@ -517,15 +592,13 @@ async def gpt_4o_complete(
) -> str:
if history_messages is None:
history_messages = []
- keyword_extraction = kwargs.pop("keyword_extraction", None)
- if keyword_extraction:
- kwargs["response_format"] = GPTKeywordExtractionFormat
return await openai_complete_if_cache(
"gpt-4o",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
enable_cot=enable_cot,
+ keyword_extraction=keyword_extraction,
**kwargs,
)
@@ -540,15 +613,13 @@ async def gpt_4o_mini_complete(
) -> str:
if history_messages is None:
history_messages = []
- keyword_extraction = kwargs.pop("keyword_extraction", None)
- if keyword_extraction:
- kwargs["response_format"] = GPTKeywordExtractionFormat
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
enable_cot=enable_cot,
+ keyword_extraction=keyword_extraction,
**kwargs,
)
@@ -563,20 +634,20 @@ async def nvidia_openai_complete(
) -> str:
if history_messages is None:
history_messages = []
- kwargs.pop("keyword_extraction", None)
result = await openai_complete_if_cache(
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
enable_cot=enable_cot,
+ keyword_extraction=keyword_extraction,
base_url="https://integrate.api.nvidia.com/v1",
**kwargs,
)
return result
-@wrap_embedding_func_with_attrs(embedding_dim=1536)
+@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
@@ -591,8 +662,12 @@ async def openai_embed(
model: str = "text-embedding-3-small",
base_url: str | None = None,
api_key: str | None = None,
+ embedding_dim: int | None = None,
client_configs: dict[str, Any] | None = None,
token_tracker: Any | None = None,
+ use_azure: bool = False,
+ azure_deployment: str | None = None,
+ api_version: str | None = None,
) -> np.ndarray:
"""Generate embeddings for a list of texts using OpenAI's API.
@@ -601,6 +676,12 @@ async def openai_embed(
model: The OpenAI embedding model to use.
base_url: Optional base URL for the OpenAI API.
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
+ embedding_dim: Optional embedding dimension for dynamic dimension reduction.
+ **IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
+ Do NOT manually pass this parameter when calling the function directly.
+ The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
+ Manually passing a different value will trigger a warning and be ignored.
+ When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
client_configs: Additional configuration options for the AsyncOpenAI client.
These will override any default configurations but will be overridden by
explicit parameters (api_key, base_url).
@@ -614,15 +695,30 @@ async def openai_embed(
RateLimitError: If the OpenAI API rate limit is exceeded.
APITimeoutError: If the OpenAI API request times out.
"""
- # Create the OpenAI client
+ # Create the OpenAI client (supports both OpenAI and Azure)
openai_async_client = create_openai_async_client(
- api_key=api_key, base_url=base_url, client_configs=client_configs
+ api_key=api_key,
+ base_url=base_url,
+ use_azure=use_azure,
+ azure_deployment=azure_deployment,
+ api_version=api_version,
+ client_configs=client_configs,
)
async with openai_async_client:
- response = await openai_async_client.embeddings.create(
- model=model, input=texts, encoding_format="base64"
- )
+ # Prepare API call parameters
+ api_params = {
+ "model": model,
+ "input": texts,
+ "encoding_format": "base64",
+ }
+
+ # Add dimensions parameter only if embedding_dim is provided
+ if embedding_dim is not None:
+ api_params["dimensions"] = embedding_dim
+
+ # Make API call
+ response = await openai_async_client.embeddings.create(**api_params)
if token_tracker and hasattr(response, "usage"):
token_counts = {
@@ -639,3 +735,134 @@ async def openai_embed(
for dp in response.data
]
)
+
+
+# Azure OpenAI wrapper functions for backward compatibility
+async def azure_openai_complete_if_cache(
+ model,
+ prompt,
+ system_prompt: str | None = None,
+ history_messages: list[dict[str, Any]] | None = None,
+ enable_cot: bool = False,
+ base_url: str | None = None,
+ api_key: str | None = None,
+ api_version: str | None = None,
+ keyword_extraction: bool = False,
+ **kwargs,
+):
+ """Azure OpenAI completion wrapper function.
+
+ This function provides backward compatibility by wrapping the unified
+ openai_complete_if_cache implementation with Azure-specific parameter handling.
+ """
+ # Handle Azure-specific environment variables and parameters
+ deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
+ base_url = (
+ base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
+ )
+ api_key = (
+ api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
+ )
+ api_version = (
+ api_version
+ or os.getenv("AZURE_OPENAI_API_VERSION")
+ or os.getenv("OPENAI_API_VERSION")
+ )
+
+ # Pop timeout from kwargs if present (will be handled by openai_complete_if_cache)
+ timeout = kwargs.pop("timeout", None)
+
+ # Call the unified implementation with Azure-specific parameters
+ return await openai_complete_if_cache(
+ model=model,
+ prompt=prompt,
+ system_prompt=system_prompt,
+ history_messages=history_messages,
+ enable_cot=enable_cot,
+ base_url=base_url,
+ api_key=api_key,
+ timeout=timeout,
+ use_azure=True,
+ azure_deployment=deployment,
+ api_version=api_version,
+ keyword_extraction=keyword_extraction,
+ **kwargs,
+ )
+
+
+async def azure_openai_complete(
+ prompt,
+ system_prompt=None,
+ history_messages=None,
+ keyword_extraction=False,
+ **kwargs,
+) -> str:
+ """Azure OpenAI complete wrapper function.
+
+ Provides backward compatibility for azure_openai_complete calls.
+ """
+ if history_messages is None:
+ history_messages = []
+ result = await azure_openai_complete_if_cache(
+ os.getenv("LLM_MODEL", "gpt-4o-mini"),
+ prompt,
+ system_prompt=system_prompt,
+ history_messages=history_messages,
+ keyword_extraction=keyword_extraction,
+ **kwargs,
+ )
+ return result
+
+
+@wrap_embedding_func_with_attrs(embedding_dim=1536)
+@retry(
+ stop=stop_after_attempt(3),
+ wait=wait_exponential(multiplier=1, min=4, max=10),
+ retry=retry_if_exception_type(
+ (RateLimitError, APIConnectionError, APITimeoutError)
+ ),
+)
+async def azure_openai_embed(
+ texts: list[str],
+ model: str | None = None,
+ base_url: str | None = None,
+ api_key: str | None = None,
+ api_version: str | None = None,
+) -> np.ndarray:
+ """Azure OpenAI embedding wrapper function.
+
+ This function provides backward compatibility by wrapping the unified
+ openai_embed implementation with Azure-specific parameter handling.
+ """
+ # Handle Azure-specific environment variables and parameters
+ deployment = (
+ os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
+ or model
+ or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
+ )
+ base_url = (
+ base_url
+ or os.getenv("AZURE_EMBEDDING_ENDPOINT")
+ or os.getenv("EMBEDDING_BINDING_HOST")
+ )
+ api_key = (
+ api_key
+ or os.getenv("AZURE_EMBEDDING_API_KEY")
+ or os.getenv("EMBEDDING_BINDING_API_KEY")
+ )
+ api_version = (
+ api_version
+ or os.getenv("AZURE_EMBEDDING_API_VERSION")
+ or os.getenv("OPENAI_API_VERSION")
+ )
+
+ # Call the unified implementation with Azure-specific parameters
+ return await openai_embed(
+ texts=texts,
+ model=model or deployment,
+ base_url=base_url,
+ api_key=api_key,
+ use_azure=True,
+ azure_deployment=deployment,
+ api_version=api_version,
+ )