Merge pull request #1732 from danielaskdd/optimize-doc-delete
Refac: Optimize document deletion performance
This commit is contained in:
commit
790677c13f
11 changed files with 693 additions and 170 deletions
16
env.example
16
env.example
|
|
@ -114,15 +114,6 @@ EMBEDDING_BINDING_HOST=http://localhost:11434
|
|||
# LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
|
||||
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
|
||||
|
||||
### TiDB Configuration (Deprecated)
|
||||
# TIDB_HOST=localhost
|
||||
# TIDB_PORT=4000
|
||||
# TIDB_USER=your_username
|
||||
# TIDB_PASSWORD='your_password'
|
||||
# TIDB_DATABASE=your_database
|
||||
### separating all data from difference Lightrag instances(deprecating)
|
||||
# TIDB_WORKSPACE=default
|
||||
|
||||
### PostgreSQL Configuration
|
||||
POSTGRES_HOST=localhost
|
||||
POSTGRES_PORT=5432
|
||||
|
|
@ -130,7 +121,7 @@ POSTGRES_USER=your_username
|
|||
POSTGRES_PASSWORD='your_password'
|
||||
POSTGRES_DATABASE=your_database
|
||||
POSTGRES_MAX_CONNECTIONS=12
|
||||
### separating all data from difference Lightrag instances(deprecating)
|
||||
### separating all data from difference Lightrag instances
|
||||
# POSTGRES_WORKSPACE=default
|
||||
|
||||
### Neo4j Configuration
|
||||
|
|
@ -146,14 +137,15 @@ NEO4J_PASSWORD='your_password'
|
|||
# AGE_POSTGRES_PORT=8529
|
||||
|
||||
# AGE Graph Name(apply to PostgreSQL and independent AGM)
|
||||
### AGE_GRAPH_NAME is precated
|
||||
### AGE_GRAPH_NAME is deprecated
|
||||
# AGE_GRAPH_NAME=lightrag
|
||||
|
||||
### MongoDB Configuration
|
||||
MONGO_URI=mongodb://root:root@localhost:27017/
|
||||
MONGO_DATABASE=LightRAG
|
||||
### separating all data from difference Lightrag instances(deprecating)
|
||||
# MONGODB_GRAPH=false
|
||||
### separating all data from difference Lightrag instances
|
||||
# MONGODB_WORKSPACE=default
|
||||
|
||||
### Milvus Configuration
|
||||
MILVUS_URI=http://localhost:19530
|
||||
|
|
|
|||
|
|
@ -634,6 +634,8 @@ class DocProcessingStatus:
|
|||
"""ISO format timestamp when document was last updated"""
|
||||
chunks_count: int | None = None
|
||||
"""Number of chunks after splitting, used for processing"""
|
||||
chunks_list: list[str] | None = field(default_factory=list)
|
||||
"""List of chunk IDs associated with this document, used for deletion"""
|
||||
error: str | None = None
|
||||
"""Error message if failed"""
|
||||
metadata: dict[str, Any] = field(default_factory=dict)
|
||||
|
|
|
|||
|
|
@ -118,6 +118,10 @@ class JsonDocStatusStorage(DocStatusStorage):
|
|||
return
|
||||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._storage_lock:
|
||||
# Ensure chunks_list field exists for new documents
|
||||
for doc_id, doc_data in data.items():
|
||||
if "chunks_list" not in doc_data:
|
||||
doc_data["chunks_list"] = []
|
||||
self._data.update(data)
|
||||
await set_all_update_flags(self.namespace)
|
||||
|
||||
|
|
|
|||
|
|
@ -78,22 +78,49 @@ class JsonKVStorage(BaseKVStorage):
|
|||
Dictionary containing all stored data
|
||||
"""
|
||||
async with self._storage_lock:
|
||||
return dict(self._data)
|
||||
result = {}
|
||||
for key, value in self._data.items():
|
||||
if value:
|
||||
# Create a copy to avoid modifying the original data
|
||||
data = dict(value)
|
||||
# Ensure time fields are present, provide default values for old data
|
||||
data.setdefault("create_time", 0)
|
||||
data.setdefault("update_time", 0)
|
||||
result[key] = data
|
||||
else:
|
||||
result[key] = value
|
||||
return result
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
async with self._storage_lock:
|
||||
return self._data.get(id)
|
||||
result = self._data.get(id)
|
||||
if result:
|
||||
# Create a copy to avoid modifying the original data
|
||||
result = dict(result)
|
||||
# Ensure time fields are present, provide default values for old data
|
||||
result.setdefault("create_time", 0)
|
||||
result.setdefault("update_time", 0)
|
||||
# Ensure _id field contains the clean ID
|
||||
result["_id"] = id
|
||||
return result
|
||||
|
||||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||||
async with self._storage_lock:
|
||||
return [
|
||||
(
|
||||
{k: v for k, v in self._data[id].items()}
|
||||
if self._data.get(id, None)
|
||||
else None
|
||||
)
|
||||
for id in ids
|
||||
]
|
||||
results = []
|
||||
for id in ids:
|
||||
data = self._data.get(id, None)
|
||||
if data:
|
||||
# Create a copy to avoid modifying the original data
|
||||
result = {k: v for k, v in data.items()}
|
||||
# Ensure time fields are present, provide default values for old data
|
||||
result.setdefault("create_time", 0)
|
||||
result.setdefault("update_time", 0)
|
||||
# Ensure _id field contains the clean ID
|
||||
result["_id"] = id
|
||||
results.append(result)
|
||||
else:
|
||||
results.append(None)
|
||||
return results
|
||||
|
||||
async def filter_keys(self, keys: set[str]) -> set[str]:
|
||||
async with self._storage_lock:
|
||||
|
|
@ -107,8 +134,29 @@ class JsonKVStorage(BaseKVStorage):
|
|||
"""
|
||||
if not data:
|
||||
return
|
||||
|
||||
import time
|
||||
|
||||
current_time = int(time.time()) # Get current Unix timestamp
|
||||
|
||||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._storage_lock:
|
||||
# Add timestamps to data based on whether key exists
|
||||
for k, v in data.items():
|
||||
# For text_chunks namespace, ensure llm_cache_list field exists
|
||||
if "text_chunks" in self.namespace:
|
||||
if "llm_cache_list" not in v:
|
||||
v["llm_cache_list"] = []
|
||||
|
||||
# Add timestamps based on whether key exists
|
||||
if k in self._data: # Key exists, only update update_time
|
||||
v["update_time"] = current_time
|
||||
else: # New key, set both create_time and update_time
|
||||
v["create_time"] = current_time
|
||||
v["update_time"] = current_time
|
||||
|
||||
v["_id"] = k
|
||||
|
||||
self._data.update(data)
|
||||
await set_all_update_flags(self.namespace)
|
||||
|
||||
|
|
|
|||
|
|
@ -98,11 +98,21 @@ class MongoKVStorage(BaseKVStorage):
|
|||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
# Unified handling for flattened keys
|
||||
return await self._data.find_one({"_id": id})
|
||||
doc = await self._data.find_one({"_id": id})
|
||||
if doc:
|
||||
# Ensure time fields are present, provide default values for old data
|
||||
doc.setdefault("create_time", 0)
|
||||
doc.setdefault("update_time", 0)
|
||||
return doc
|
||||
|
||||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||||
cursor = self._data.find({"_id": {"$in": ids}})
|
||||
return await cursor.to_list()
|
||||
docs = await cursor.to_list()
|
||||
# Ensure time fields are present for all documents
|
||||
for doc in docs:
|
||||
doc.setdefault("create_time", 0)
|
||||
doc.setdefault("update_time", 0)
|
||||
return docs
|
||||
|
||||
async def filter_keys(self, keys: set[str]) -> set[str]:
|
||||
cursor = self._data.find({"_id": {"$in": list(keys)}}, {"_id": 1})
|
||||
|
|
@ -119,6 +129,9 @@ class MongoKVStorage(BaseKVStorage):
|
|||
result = {}
|
||||
async for doc in cursor:
|
||||
doc_id = doc.pop("_id")
|
||||
# Ensure time fields are present for all documents
|
||||
doc.setdefault("create_time", 0)
|
||||
doc.setdefault("update_time", 0)
|
||||
result[doc_id] = doc
|
||||
return result
|
||||
|
||||
|
|
@ -132,9 +145,29 @@ class MongoKVStorage(BaseKVStorage):
|
|||
from pymongo import UpdateOne
|
||||
|
||||
operations = []
|
||||
current_time = int(time.time()) # Get current Unix timestamp
|
||||
|
||||
for k, v in data.items():
|
||||
# For text_chunks namespace, ensure llm_cache_list field exists
|
||||
if self.namespace.endswith("text_chunks"):
|
||||
if "llm_cache_list" not in v:
|
||||
v["llm_cache_list"] = []
|
||||
|
||||
v["_id"] = k # Use flattened key as _id
|
||||
operations.append(UpdateOne({"_id": k}, {"$set": v}, upsert=True))
|
||||
v["update_time"] = current_time # Always update update_time
|
||||
|
||||
operations.append(
|
||||
UpdateOne(
|
||||
{"_id": k},
|
||||
{
|
||||
"$set": v, # Update all fields including update_time
|
||||
"$setOnInsert": {
|
||||
"create_time": current_time
|
||||
}, # Set create_time only on insert
|
||||
},
|
||||
upsert=True,
|
||||
)
|
||||
)
|
||||
|
||||
if operations:
|
||||
await self._data.bulk_write(operations)
|
||||
|
|
@ -247,6 +280,9 @@ class MongoDocStatusStorage(DocStatusStorage):
|
|||
return
|
||||
update_tasks: list[Any] = []
|
||||
for k, v in data.items():
|
||||
# Ensure chunks_list field exists and is an array
|
||||
if "chunks_list" not in v:
|
||||
v["chunks_list"] = []
|
||||
data[k]["_id"] = k
|
||||
update_tasks.append(
|
||||
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
|
||||
|
|
@ -279,6 +315,7 @@ class MongoDocStatusStorage(DocStatusStorage):
|
|||
updated_at=doc.get("updated_at"),
|
||||
chunks_count=doc.get("chunks_count", -1),
|
||||
file_path=doc.get("file_path", doc["_id"]),
|
||||
chunks_list=doc.get("chunks_list", []),
|
||||
)
|
||||
for doc in result
|
||||
}
|
||||
|
|
|
|||
|
|
@ -136,6 +136,52 @@ class PostgreSQLDB:
|
|||
except Exception as e:
|
||||
logger.warning(f"Failed to add chunk_id column to LIGHTRAG_LLM_CACHE: {e}")
|
||||
|
||||
async def _migrate_llm_cache_add_cache_type(self):
|
||||
"""Add cache_type column to LIGHTRAG_LLM_CACHE table if it doesn't exist"""
|
||||
try:
|
||||
# Check if cache_type column exists
|
||||
check_column_sql = """
|
||||
SELECT column_name
|
||||
FROM information_schema.columns
|
||||
WHERE table_name = 'lightrag_llm_cache'
|
||||
AND column_name = 'cache_type'
|
||||
"""
|
||||
|
||||
column_info = await self.query(check_column_sql)
|
||||
if not column_info:
|
||||
logger.info("Adding cache_type column to LIGHTRAG_LLM_CACHE table")
|
||||
add_column_sql = """
|
||||
ALTER TABLE LIGHTRAG_LLM_CACHE
|
||||
ADD COLUMN cache_type VARCHAR(32) NULL
|
||||
"""
|
||||
await self.execute(add_column_sql)
|
||||
logger.info(
|
||||
"Successfully added cache_type column to LIGHTRAG_LLM_CACHE table"
|
||||
)
|
||||
|
||||
# Migrate existing data: extract cache_type from flattened keys
|
||||
logger.info(
|
||||
"Migrating existing LLM cache data to populate cache_type field"
|
||||
)
|
||||
update_sql = """
|
||||
UPDATE LIGHTRAG_LLM_CACHE
|
||||
SET cache_type = CASE
|
||||
WHEN id LIKE '%:%:%' THEN split_part(id, ':', 2)
|
||||
ELSE 'extract'
|
||||
END
|
||||
WHERE cache_type IS NULL
|
||||
"""
|
||||
await self.execute(update_sql)
|
||||
logger.info("Successfully migrated existing LLM cache data")
|
||||
else:
|
||||
logger.info(
|
||||
"cache_type column already exists in LIGHTRAG_LLM_CACHE table"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to add cache_type column to LIGHTRAG_LLM_CACHE: {e}"
|
||||
)
|
||||
|
||||
async def _migrate_timestamp_columns(self):
|
||||
"""Migrate timestamp columns in tables to timezone-aware types, assuming original data is in UTC time"""
|
||||
# Tables and columns that need migration
|
||||
|
|
@ -301,15 +347,17 @@ class PostgreSQLDB:
|
|||
record["mode"], record["original_prompt"]
|
||||
)
|
||||
|
||||
# Determine cache_type based on mode
|
||||
cache_type = "extract" if record["mode"] == "default" else "unknown"
|
||||
|
||||
# Generate new flattened key
|
||||
cache_type = "extract" # Default type
|
||||
new_key = f"{record['mode']}:{cache_type}:{new_hash}"
|
||||
|
||||
# Insert new format data
|
||||
# Insert new format data with cache_type field
|
||||
insert_sql = """
|
||||
INSERT INTO LIGHTRAG_LLM_CACHE
|
||||
(workspace, id, mode, original_prompt, return_value, chunk_id, create_time, update_time)
|
||||
VALUES ($1, $2, $3, $4, $5, $6, $7, $8)
|
||||
(workspace, id, mode, original_prompt, return_value, chunk_id, cache_type, create_time, update_time)
|
||||
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)
|
||||
ON CONFLICT (workspace, mode, id) DO NOTHING
|
||||
"""
|
||||
|
||||
|
|
@ -322,6 +370,7 @@ class PostgreSQLDB:
|
|||
"original_prompt": record["original_prompt"],
|
||||
"return_value": record["return_value"],
|
||||
"chunk_id": record["chunk_id"],
|
||||
"cache_type": cache_type, # Add cache_type field
|
||||
"create_time": record["create_time"],
|
||||
"update_time": record["update_time"],
|
||||
},
|
||||
|
|
@ -357,6 +406,68 @@ class PostgreSQLDB:
|
|||
logger.error(f"LLM cache migration failed: {e}")
|
||||
# Don't raise exception, allow system to continue startup
|
||||
|
||||
async def _migrate_doc_status_add_chunks_list(self):
|
||||
"""Add chunks_list column to LIGHTRAG_DOC_STATUS table if it doesn't exist"""
|
||||
try:
|
||||
# Check if chunks_list column exists
|
||||
check_column_sql = """
|
||||
SELECT column_name
|
||||
FROM information_schema.columns
|
||||
WHERE table_name = 'lightrag_doc_status'
|
||||
AND column_name = 'chunks_list'
|
||||
"""
|
||||
|
||||
column_info = await self.query(check_column_sql)
|
||||
if not column_info:
|
||||
logger.info("Adding chunks_list column to LIGHTRAG_DOC_STATUS table")
|
||||
add_column_sql = """
|
||||
ALTER TABLE LIGHTRAG_DOC_STATUS
|
||||
ADD COLUMN chunks_list JSONB NULL DEFAULT '[]'::jsonb
|
||||
"""
|
||||
await self.execute(add_column_sql)
|
||||
logger.info(
|
||||
"Successfully added chunks_list column to LIGHTRAG_DOC_STATUS table"
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
"chunks_list column already exists in LIGHTRAG_DOC_STATUS table"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to add chunks_list column to LIGHTRAG_DOC_STATUS: {e}"
|
||||
)
|
||||
|
||||
async def _migrate_text_chunks_add_llm_cache_list(self):
|
||||
"""Add llm_cache_list column to LIGHTRAG_DOC_CHUNKS table if it doesn't exist"""
|
||||
try:
|
||||
# Check if llm_cache_list column exists
|
||||
check_column_sql = """
|
||||
SELECT column_name
|
||||
FROM information_schema.columns
|
||||
WHERE table_name = 'lightrag_doc_chunks'
|
||||
AND column_name = 'llm_cache_list'
|
||||
"""
|
||||
|
||||
column_info = await self.query(check_column_sql)
|
||||
if not column_info:
|
||||
logger.info("Adding llm_cache_list column to LIGHTRAG_DOC_CHUNKS table")
|
||||
add_column_sql = """
|
||||
ALTER TABLE LIGHTRAG_DOC_CHUNKS
|
||||
ADD COLUMN llm_cache_list JSONB NULL DEFAULT '[]'::jsonb
|
||||
"""
|
||||
await self.execute(add_column_sql)
|
||||
logger.info(
|
||||
"Successfully added llm_cache_list column to LIGHTRAG_DOC_CHUNKS table"
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
"llm_cache_list column already exists in LIGHTRAG_DOC_CHUNKS table"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to add llm_cache_list column to LIGHTRAG_DOC_CHUNKS: {e}"
|
||||
)
|
||||
|
||||
async def check_tables(self):
|
||||
# First create all tables
|
||||
for k, v in TABLES.items():
|
||||
|
|
@ -408,6 +519,15 @@ class PostgreSQLDB:
|
|||
logger.error(f"PostgreSQL, Failed to migrate LLM cache chunk_id field: {e}")
|
||||
# Don't throw an exception, allow the initialization process to continue
|
||||
|
||||
# Migrate LLM cache table to add cache_type field if needed
|
||||
try:
|
||||
await self._migrate_llm_cache_add_cache_type()
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"PostgreSQL, Failed to migrate LLM cache cache_type field: {e}"
|
||||
)
|
||||
# Don't throw an exception, allow the initialization process to continue
|
||||
|
||||
# Finally, attempt to migrate old doc chunks data if needed
|
||||
try:
|
||||
await self._migrate_doc_chunks_to_vdb_chunks()
|
||||
|
|
@ -421,6 +541,22 @@ class PostgreSQLDB:
|
|||
except Exception as e:
|
||||
logger.error(f"PostgreSQL, LLM cache migration failed: {e}")
|
||||
|
||||
# Migrate doc status to add chunks_list field if needed
|
||||
try:
|
||||
await self._migrate_doc_status_add_chunks_list()
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"PostgreSQL, Failed to migrate doc status chunks_list field: {e}"
|
||||
)
|
||||
|
||||
# Migrate text chunks to add llm_cache_list field if needed
|
||||
try:
|
||||
await self._migrate_text_chunks_add_llm_cache_list()
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"PostgreSQL, Failed to migrate text chunks llm_cache_list field: {e}"
|
||||
)
|
||||
|
||||
async def query(
|
||||
self,
|
||||
sql: str,
|
||||
|
|
@ -608,24 +744,36 @@ class PGKVStorage(BaseKVStorage):
|
|||
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||
processed_results = {}
|
||||
for row in results:
|
||||
# Parse flattened key to extract cache_type
|
||||
key_parts = row["id"].split(":")
|
||||
cache_type = key_parts[1] if len(key_parts) >= 3 else "unknown"
|
||||
|
||||
# Map field names and add cache_type for compatibility
|
||||
processed_row = {
|
||||
**row,
|
||||
"return": row.get(
|
||||
"return_value", ""
|
||||
), # Map return_value to return
|
||||
"cache_type": cache_type, # Add cache_type from key
|
||||
"return": row.get("return_value", ""),
|
||||
"cache_type": row.get("original_prompt", "unknow"),
|
||||
"original_prompt": row.get("original_prompt", ""),
|
||||
"chunk_id": row.get("chunk_id"),
|
||||
"mode": row.get("mode", "default"),
|
||||
"create_time": row.get("create_time", 0),
|
||||
"update_time": row.get("update_time", 0),
|
||||
}
|
||||
processed_results[row["id"]] = processed_row
|
||||
return processed_results
|
||||
|
||||
# For text_chunks namespace, parse llm_cache_list JSON string back to list
|
||||
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
||||
processed_results = {}
|
||||
for row in results:
|
||||
llm_cache_list = row.get("llm_cache_list", [])
|
||||
if isinstance(llm_cache_list, str):
|
||||
try:
|
||||
llm_cache_list = json.loads(llm_cache_list)
|
||||
except json.JSONDecodeError:
|
||||
llm_cache_list = []
|
||||
row["llm_cache_list"] = llm_cache_list
|
||||
row["create_time"] = row.get("create_time", 0)
|
||||
row["update_time"] = row.get("update_time", 0)
|
||||
processed_results[row["id"]] = row
|
||||
return processed_results
|
||||
|
||||
# For other namespaces, return as-is
|
||||
return {row["id"]: row for row in results}
|
||||
except Exception as e:
|
||||
|
|
@ -637,6 +785,35 @@ class PGKVStorage(BaseKVStorage):
|
|||
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "id": id}
|
||||
response = await self.db.query(sql, params)
|
||||
|
||||
if response and is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
||||
# Parse llm_cache_list JSON string back to list
|
||||
llm_cache_list = response.get("llm_cache_list", [])
|
||||
if isinstance(llm_cache_list, str):
|
||||
try:
|
||||
llm_cache_list = json.loads(llm_cache_list)
|
||||
except json.JSONDecodeError:
|
||||
llm_cache_list = []
|
||||
response["llm_cache_list"] = llm_cache_list
|
||||
response["create_time"] = response.get("create_time", 0)
|
||||
response["update_time"] = response.get("update_time", 0)
|
||||
|
||||
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
|
||||
if response and is_namespace(
|
||||
self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
|
||||
):
|
||||
# Map field names and add cache_type for compatibility
|
||||
response = {
|
||||
**response,
|
||||
"return": response.get("return_value", ""),
|
||||
"cache_type": response.get("cache_type"),
|
||||
"original_prompt": response.get("original_prompt", ""),
|
||||
"chunk_id": response.get("chunk_id"),
|
||||
"mode": response.get("mode", "default"),
|
||||
"create_time": response.get("create_time", 0),
|
||||
"update_time": response.get("update_time", 0),
|
||||
}
|
||||
|
||||
return response if response else None
|
||||
|
||||
# Query by id
|
||||
|
|
@ -646,13 +823,42 @@ class PGKVStorage(BaseKVStorage):
|
|||
ids=",".join([f"'{id}'" for id in ids])
|
||||
)
|
||||
params = {"workspace": self.db.workspace}
|
||||
return await self.db.query(sql, params, multirows=True)
|
||||
results = await self.db.query(sql, params, multirows=True)
|
||||
|
||||
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
||||
"""Specifically for llm_response_cache."""
|
||||
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "status": status}
|
||||
return await self.db.query(SQL, params, multirows=True)
|
||||
if results and is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
||||
# Parse llm_cache_list JSON string back to list for each result
|
||||
for result in results:
|
||||
llm_cache_list = result.get("llm_cache_list", [])
|
||||
if isinstance(llm_cache_list, str):
|
||||
try:
|
||||
llm_cache_list = json.loads(llm_cache_list)
|
||||
except json.JSONDecodeError:
|
||||
llm_cache_list = []
|
||||
result["llm_cache_list"] = llm_cache_list
|
||||
result["create_time"] = result.get("create_time", 0)
|
||||
result["update_time"] = result.get("update_time", 0)
|
||||
|
||||
# Special handling for LLM cache to ensure compatibility with _get_cached_extraction_results
|
||||
if results and is_namespace(
|
||||
self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
|
||||
):
|
||||
processed_results = []
|
||||
for row in results:
|
||||
# Map field names and add cache_type for compatibility
|
||||
processed_row = {
|
||||
**row,
|
||||
"return": row.get("return_value", ""),
|
||||
"cache_type": row.get("cache_type"),
|
||||
"original_prompt": row.get("original_prompt", ""),
|
||||
"chunk_id": row.get("chunk_id"),
|
||||
"mode": row.get("mode", "default"),
|
||||
"create_time": row.get("create_time", 0),
|
||||
"update_time": row.get("update_time", 0),
|
||||
}
|
||||
processed_results.append(processed_row)
|
||||
return processed_results
|
||||
|
||||
return results if results else []
|
||||
|
||||
async def filter_keys(self, keys: set[str]) -> set[str]:
|
||||
"""Filter out duplicated content"""
|
||||
|
|
@ -693,6 +899,7 @@ class PGKVStorage(BaseKVStorage):
|
|||
"full_doc_id": v["full_doc_id"],
|
||||
"content": v["content"],
|
||||
"file_path": v["file_path"],
|
||||
"llm_cache_list": json.dumps(v.get("llm_cache_list", [])),
|
||||
"create_time": current_time,
|
||||
"update_time": current_time,
|
||||
}
|
||||
|
|
@ -716,6 +923,9 @@ class PGKVStorage(BaseKVStorage):
|
|||
"return_value": v["return"],
|
||||
"mode": v.get("mode", "default"), # Get mode from data
|
||||
"chunk_id": v.get("chunk_id"),
|
||||
"cache_type": v.get(
|
||||
"cache_type", "extract"
|
||||
), # Get cache_type from data
|
||||
}
|
||||
|
||||
await self.db.execute(upsert_sql, _data)
|
||||
|
|
@ -1140,6 +1350,14 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
if result is None or result == []:
|
||||
return None
|
||||
else:
|
||||
# Parse chunks_list JSON string back to list
|
||||
chunks_list = result[0].get("chunks_list", [])
|
||||
if isinstance(chunks_list, str):
|
||||
try:
|
||||
chunks_list = json.loads(chunks_list)
|
||||
except json.JSONDecodeError:
|
||||
chunks_list = []
|
||||
|
||||
return dict(
|
||||
content=result[0]["content"],
|
||||
content_length=result[0]["content_length"],
|
||||
|
|
@ -1149,6 +1367,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
created_at=result[0]["created_at"],
|
||||
updated_at=result[0]["updated_at"],
|
||||
file_path=result[0]["file_path"],
|
||||
chunks_list=chunks_list,
|
||||
)
|
||||
|
||||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||||
|
|
@ -1163,19 +1382,32 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
|
||||
if not results:
|
||||
return []
|
||||
return [
|
||||
{
|
||||
"content": row["content"],
|
||||
"content_length": row["content_length"],
|
||||
"content_summary": row["content_summary"],
|
||||
"status": row["status"],
|
||||
"chunks_count": row["chunks_count"],
|
||||
"created_at": row["created_at"],
|
||||
"updated_at": row["updated_at"],
|
||||
"file_path": row["file_path"],
|
||||
}
|
||||
for row in results
|
||||
]
|
||||
|
||||
processed_results = []
|
||||
for row in results:
|
||||
# Parse chunks_list JSON string back to list
|
||||
chunks_list = row.get("chunks_list", [])
|
||||
if isinstance(chunks_list, str):
|
||||
try:
|
||||
chunks_list = json.loads(chunks_list)
|
||||
except json.JSONDecodeError:
|
||||
chunks_list = []
|
||||
|
||||
processed_results.append(
|
||||
{
|
||||
"content": row["content"],
|
||||
"content_length": row["content_length"],
|
||||
"content_summary": row["content_summary"],
|
||||
"status": row["status"],
|
||||
"chunks_count": row["chunks_count"],
|
||||
"created_at": row["created_at"],
|
||||
"updated_at": row["updated_at"],
|
||||
"file_path": row["file_path"],
|
||||
"chunks_list": chunks_list,
|
||||
}
|
||||
)
|
||||
|
||||
return processed_results
|
||||
|
||||
async def get_status_counts(self) -> dict[str, int]:
|
||||
"""Get counts of documents in each status"""
|
||||
|
|
@ -1196,8 +1428,18 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
sql = "select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$2"
|
||||
params = {"workspace": self.db.workspace, "status": status.value}
|
||||
result = await self.db.query(sql, params, True)
|
||||
docs_by_status = {
|
||||
element["id"]: DocProcessingStatus(
|
||||
|
||||
docs_by_status = {}
|
||||
for element in result:
|
||||
# Parse chunks_list JSON string back to list
|
||||
chunks_list = element.get("chunks_list", [])
|
||||
if isinstance(chunks_list, str):
|
||||
try:
|
||||
chunks_list = json.loads(chunks_list)
|
||||
except json.JSONDecodeError:
|
||||
chunks_list = []
|
||||
|
||||
docs_by_status[element["id"]] = DocProcessingStatus(
|
||||
content=element["content"],
|
||||
content_summary=element["content_summary"],
|
||||
content_length=element["content_length"],
|
||||
|
|
@ -1206,9 +1448,9 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
updated_at=element["updated_at"],
|
||||
chunks_count=element["chunks_count"],
|
||||
file_path=element["file_path"],
|
||||
chunks_list=chunks_list,
|
||||
)
|
||||
for element in result
|
||||
}
|
||||
|
||||
return docs_by_status
|
||||
|
||||
async def index_done_callback(self) -> None:
|
||||
|
|
@ -1272,10 +1514,10 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
logger.warning(f"Unable to parse datetime string: {dt_str}")
|
||||
return None
|
||||
|
||||
# Modified SQL to include created_at and updated_at in both INSERT and UPDATE operations
|
||||
# Both fields are updated from the input data in both INSERT and UPDATE cases
|
||||
sql = """insert into LIGHTRAG_DOC_STATUS(workspace,id,content,content_summary,content_length,chunks_count,status,file_path,created_at,updated_at)
|
||||
values($1,$2,$3,$4,$5,$6,$7,$8,$9,$10)
|
||||
# Modified SQL to include created_at, updated_at, and chunks_list in both INSERT and UPDATE operations
|
||||
# All fields are updated from the input data in both INSERT and UPDATE cases
|
||||
sql = """insert into LIGHTRAG_DOC_STATUS(workspace,id,content,content_summary,content_length,chunks_count,status,file_path,chunks_list,created_at,updated_at)
|
||||
values($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11)
|
||||
on conflict(id,workspace) do update set
|
||||
content = EXCLUDED.content,
|
||||
content_summary = EXCLUDED.content_summary,
|
||||
|
|
@ -1283,6 +1525,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
chunks_count = EXCLUDED.chunks_count,
|
||||
status = EXCLUDED.status,
|
||||
file_path = EXCLUDED.file_path,
|
||||
chunks_list = EXCLUDED.chunks_list,
|
||||
created_at = EXCLUDED.created_at,
|
||||
updated_at = EXCLUDED.updated_at"""
|
||||
for k, v in data.items():
|
||||
|
|
@ -1290,7 +1533,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
created_at = parse_datetime(v.get("created_at"))
|
||||
updated_at = parse_datetime(v.get("updated_at"))
|
||||
|
||||
# chunks_count is optional
|
||||
# chunks_count and chunks_list are optional
|
||||
await self.db.execute(
|
||||
sql,
|
||||
{
|
||||
|
|
@ -1302,6 +1545,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|||
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
|
||||
"status": v["status"],
|
||||
"file_path": v["file_path"],
|
||||
"chunks_list": json.dumps(v.get("chunks_list", [])),
|
||||
"created_at": created_at, # Use the converted datetime object
|
||||
"updated_at": updated_at, # Use the converted datetime object
|
||||
},
|
||||
|
|
@ -2620,6 +2864,7 @@ TABLES = {
|
|||
tokens INTEGER,
|
||||
content TEXT,
|
||||
file_path VARCHAR(256),
|
||||
llm_cache_list JSONB NULL DEFAULT '[]'::jsonb,
|
||||
create_time TIMESTAMP(0) WITH TIME ZONE,
|
||||
update_time TIMESTAMP(0) WITH TIME ZONE,
|
||||
CONSTRAINT LIGHTRAG_DOC_CHUNKS_PK PRIMARY KEY (workspace, id)
|
||||
|
|
@ -2692,6 +2937,7 @@ TABLES = {
|
|||
chunks_count int4 NULL,
|
||||
status varchar(64) NULL,
|
||||
file_path TEXT NULL,
|
||||
chunks_list JSONB NULL DEFAULT '[]'::jsonb,
|
||||
created_at timestamp with time zone DEFAULT CURRENT_TIMESTAMP NULL,
|
||||
updated_at timestamp with time zone DEFAULT CURRENT_TIMESTAMP NULL,
|
||||
CONSTRAINT LIGHTRAG_DOC_STATUS_PK PRIMARY KEY (workspace, id)
|
||||
|
|
@ -2706,24 +2952,30 @@ SQL_TEMPLATES = {
|
|||
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id=$2
|
||||
""",
|
||||
"get_by_id_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
||||
chunk_order_index, full_doc_id, file_path
|
||||
chunk_order_index, full_doc_id, file_path,
|
||||
COALESCE(llm_cache_list, '[]'::jsonb) as llm_cache_list,
|
||||
create_time, update_time
|
||||
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id=$2
|
||||
""",
|
||||
"get_by_id_llm_response_cache": """SELECT id, original_prompt, COALESCE(return_value, '') as "return", mode, chunk_id
|
||||
"get_by_id_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id, cache_type,
|
||||
create_time, update_time
|
||||
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND id=$2
|
||||
""",
|
||||
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, COALESCE(return_value, '') as "return", mode, chunk_id
|
||||
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id
|
||||
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode=$2 AND id=$3
|
||||
""",
|
||||
"get_by_ids_full_docs": """SELECT id, COALESCE(content, '') as content
|
||||
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id IN ({ids})
|
||||
""",
|
||||
"get_by_ids_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
||||
chunk_order_index, full_doc_id, file_path
|
||||
chunk_order_index, full_doc_id, file_path,
|
||||
COALESCE(llm_cache_list, '[]'::jsonb) as llm_cache_list,
|
||||
create_time, update_time
|
||||
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id IN ({ids})
|
||||
""",
|
||||
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, COALESCE(return_value, '') as "return", mode, chunk_id
|
||||
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode= IN ({ids})
|
||||
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, return_value, mode, chunk_id, cache_type,
|
||||
create_time, update_time
|
||||
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND id IN ({ids})
|
||||
""",
|
||||
"filter_keys": "SELECT id FROM {table_name} WHERE workspace=$1 AND id IN ({ids})",
|
||||
"upsert_doc_full": """INSERT INTO LIGHTRAG_DOC_FULL (id, content, workspace)
|
||||
|
|
@ -2731,25 +2983,27 @@ SQL_TEMPLATES = {
|
|||
ON CONFLICT (workspace,id) DO UPDATE
|
||||
SET content = $2, update_time = CURRENT_TIMESTAMP
|
||||
""",
|
||||
"upsert_llm_response_cache": """INSERT INTO LIGHTRAG_LLM_CACHE(workspace,id,original_prompt,return_value,mode,chunk_id)
|
||||
VALUES ($1, $2, $3, $4, $5, $6)
|
||||
"upsert_llm_response_cache": """INSERT INTO LIGHTRAG_LLM_CACHE(workspace,id,original_prompt,return_value,mode,chunk_id,cache_type)
|
||||
VALUES ($1, $2, $3, $4, $5, $6, $7)
|
||||
ON CONFLICT (workspace,mode,id) DO UPDATE
|
||||
SET original_prompt = EXCLUDED.original_prompt,
|
||||
return_value=EXCLUDED.return_value,
|
||||
mode=EXCLUDED.mode,
|
||||
chunk_id=EXCLUDED.chunk_id,
|
||||
cache_type=EXCLUDED.cache_type,
|
||||
update_time = CURRENT_TIMESTAMP
|
||||
""",
|
||||
"upsert_text_chunk": """INSERT INTO LIGHTRAG_DOC_CHUNKS (workspace, id, tokens,
|
||||
chunk_order_index, full_doc_id, content, file_path,
|
||||
chunk_order_index, full_doc_id, content, file_path, llm_cache_list,
|
||||
create_time, update_time)
|
||||
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)
|
||||
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)
|
||||
ON CONFLICT (workspace,id) DO UPDATE
|
||||
SET tokens=EXCLUDED.tokens,
|
||||
chunk_order_index=EXCLUDED.chunk_order_index,
|
||||
full_doc_id=EXCLUDED.full_doc_id,
|
||||
content = EXCLUDED.content,
|
||||
file_path=EXCLUDED.file_path,
|
||||
llm_cache_list=EXCLUDED.llm_cache_list,
|
||||
update_time = EXCLUDED.update_time
|
||||
""",
|
||||
# SQL for VectorStorage
|
||||
|
|
|
|||
|
|
@ -132,7 +132,13 @@ class RedisKVStorage(BaseKVStorage):
|
|||
async with self._get_redis_connection() as redis:
|
||||
try:
|
||||
data = await redis.get(f"{self.namespace}:{id}")
|
||||
return json.loads(data) if data else None
|
||||
if data:
|
||||
result = json.loads(data)
|
||||
# Ensure time fields are present, provide default values for old data
|
||||
result.setdefault("create_time", 0)
|
||||
result.setdefault("update_time", 0)
|
||||
return result
|
||||
return None
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"JSON decode error for id {id}: {e}")
|
||||
return None
|
||||
|
|
@ -144,7 +150,19 @@ class RedisKVStorage(BaseKVStorage):
|
|||
for id in ids:
|
||||
pipe.get(f"{self.namespace}:{id}")
|
||||
results = await pipe.execute()
|
||||
return [json.loads(result) if result else None for result in results]
|
||||
|
||||
processed_results = []
|
||||
for result in results:
|
||||
if result:
|
||||
data = json.loads(result)
|
||||
# Ensure time fields are present for all documents
|
||||
data.setdefault("create_time", 0)
|
||||
data.setdefault("update_time", 0)
|
||||
processed_results.append(data)
|
||||
else:
|
||||
processed_results.append(None)
|
||||
|
||||
return processed_results
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"JSON decode error in batch get: {e}")
|
||||
return [None] * len(ids)
|
||||
|
|
@ -176,7 +194,11 @@ class RedisKVStorage(BaseKVStorage):
|
|||
# Extract the ID part (after namespace:)
|
||||
key_id = key.split(":", 1)[1]
|
||||
try:
|
||||
result[key_id] = json.loads(value)
|
||||
data = json.loads(value)
|
||||
# Ensure time fields are present for all documents
|
||||
data.setdefault("create_time", 0)
|
||||
data.setdefault("update_time", 0)
|
||||
result[key_id] = data
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"JSON decode error for key {key}: {e}")
|
||||
continue
|
||||
|
|
@ -200,15 +222,41 @@ class RedisKVStorage(BaseKVStorage):
|
|||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||||
if not data:
|
||||
return
|
||||
|
||||
import time
|
||||
|
||||
current_time = int(time.time()) # Get current Unix timestamp
|
||||
|
||||
async with self._get_redis_connection() as redis:
|
||||
try:
|
||||
# Check which keys already exist to determine create vs update
|
||||
pipe = redis.pipeline()
|
||||
for k in data.keys():
|
||||
pipe.exists(f"{self.namespace}:{k}")
|
||||
exists_results = await pipe.execute()
|
||||
|
||||
# Add timestamps to data
|
||||
for i, (k, v) in enumerate(data.items()):
|
||||
# For text_chunks namespace, ensure llm_cache_list field exists
|
||||
if "text_chunks" in self.namespace:
|
||||
if "llm_cache_list" not in v:
|
||||
v["llm_cache_list"] = []
|
||||
|
||||
# Add timestamps based on whether key exists
|
||||
if exists_results[i]: # Key exists, only update update_time
|
||||
v["update_time"] = current_time
|
||||
else: # New key, set both create_time and update_time
|
||||
v["create_time"] = current_time
|
||||
v["update_time"] = current_time
|
||||
|
||||
v["_id"] = k
|
||||
|
||||
# Store the data
|
||||
pipe = redis.pipeline()
|
||||
for k, v in data.items():
|
||||
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
||||
await pipe.execute()
|
||||
|
||||
for k in data:
|
||||
data[k]["_id"] = k
|
||||
except json.JSONEncodeError as e:
|
||||
logger.error(f"JSON encode error during upsert: {e}")
|
||||
raise
|
||||
|
|
@ -601,6 +649,11 @@ class RedisDocStatusStorage(DocStatusStorage):
|
|||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._get_redis_connection() as redis:
|
||||
try:
|
||||
# Ensure chunks_list field exists for new documents
|
||||
for doc_id, doc_data in data.items():
|
||||
if "chunks_list" not in doc_data:
|
||||
doc_data["chunks_list"] = []
|
||||
|
||||
pipe = redis.pipeline()
|
||||
for k, v in data.items():
|
||||
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
||||
|
|
|
|||
|
|
@ -520,11 +520,6 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|||
}
|
||||
await self.db.execute(SQL_TEMPLATES["upsert_relationship"], param)
|
||||
|
||||
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
||||
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "status": status}
|
||||
return await self.db.query(SQL, params, multirows=True)
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete vectors with specified IDs from the storage.
|
||||
|
||||
|
|
|
|||
|
|
@ -349,6 +349,7 @@ class LightRAG:
|
|||
|
||||
# Fix global_config now
|
||||
global_config = asdict(self)
|
||||
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
|
||||
|
|
@ -952,6 +953,7 @@ class LightRAG:
|
|||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
"file_path": file_path, # Add file path to each chunk
|
||||
"llm_cache_list": [], # Initialize empty LLM cache list for each chunk
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
self.tokenizer,
|
||||
|
|
@ -963,14 +965,17 @@ class LightRAG:
|
|||
)
|
||||
}
|
||||
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
# Create tasks with references for potential cancellation
|
||||
# Process document in two stages
|
||||
# Stage 1: Process text chunks and docs (parallel execution)
|
||||
doc_status_task = asyncio.create_task(
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"chunks_count": len(chunks),
|
||||
"chunks_list": list(
|
||||
chunks.keys()
|
||||
), # Save chunks list
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
|
|
@ -986,11 +991,6 @@ class LightRAG:
|
|||
chunks_vdb_task = asyncio.create_task(
|
||||
self.chunks_vdb.upsert(chunks)
|
||||
)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
)
|
||||
full_docs_task = asyncio.create_task(
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
|
|
@ -999,14 +999,26 @@ class LightRAG:
|
|||
text_chunks_task = asyncio.create_task(
|
||||
self.text_chunks.upsert(chunks)
|
||||
)
|
||||
tasks = [
|
||||
|
||||
# First stage tasks (parallel execution)
|
||||
first_stage_tasks = [
|
||||
doc_status_task,
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
entity_relation_task = None
|
||||
|
||||
# Execute first stage tasks
|
||||
await asyncio.gather(*first_stage_tasks)
|
||||
|
||||
# Stage 2: Process entity relation graph (after text_chunks are saved)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
)
|
||||
await entity_relation_task
|
||||
file_extraction_stage_ok = True
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -1021,14 +1033,14 @@ class LightRAG:
|
|||
)
|
||||
pipeline_status["history_messages"].append(error_msg)
|
||||
|
||||
# Cancel other tasks as they are no longer meaningful
|
||||
for task in [
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]:
|
||||
if not task.done():
|
||||
# Cancel tasks that are not yet completed
|
||||
all_tasks = first_stage_tasks + (
|
||||
[entity_relation_task]
|
||||
if entity_relation_task
|
||||
else []
|
||||
)
|
||||
for task in all_tasks:
|
||||
if task and not task.done():
|
||||
task.cancel()
|
||||
|
||||
# Persistent llm cache
|
||||
|
|
@ -1078,6 +1090,9 @@ class LightRAG:
|
|||
doc_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"chunks_list": list(
|
||||
chunks.keys()
|
||||
), # 保留 chunks_list
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
|
|
@ -1196,6 +1211,7 @@ class LightRAG:
|
|||
pipeline_status=pipeline_status,
|
||||
pipeline_status_lock=pipeline_status_lock,
|
||||
llm_response_cache=self.llm_response_cache,
|
||||
text_chunks_storage=self.text_chunks,
|
||||
)
|
||||
return chunk_results
|
||||
except Exception as e:
|
||||
|
|
@ -1726,28 +1742,10 @@ class LightRAG:
|
|||
file_path="",
|
||||
)
|
||||
|
||||
# 2. Get all chunks related to this document
|
||||
try:
|
||||
all_chunks = await self.text_chunks.get_all()
|
||||
related_chunks = {
|
||||
chunk_id: chunk_data
|
||||
for chunk_id, chunk_data in all_chunks.items()
|
||||
if isinstance(chunk_data, dict)
|
||||
and chunk_data.get("full_doc_id") == doc_id
|
||||
}
|
||||
# 2. Get chunk IDs from document status
|
||||
chunk_ids = set(doc_status_data.get("chunks_list", []))
|
||||
|
||||
# Update pipeline status after getting chunks count
|
||||
async with pipeline_status_lock:
|
||||
log_message = f"Retrieved {len(related_chunks)} of {len(all_chunks)} related chunks"
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to retrieve chunks for document {doc_id}: {e}")
|
||||
raise Exception(f"Failed to retrieve document chunks: {e}") from e
|
||||
|
||||
if not related_chunks:
|
||||
if not chunk_ids:
|
||||
logger.warning(f"No chunks found for document {doc_id}")
|
||||
# Mark that deletion operations have started
|
||||
deletion_operations_started = True
|
||||
|
|
@ -1778,7 +1776,6 @@ class LightRAG:
|
|||
file_path=file_path,
|
||||
)
|
||||
|
||||
chunk_ids = set(related_chunks.keys())
|
||||
# Mark that deletion operations have started
|
||||
deletion_operations_started = True
|
||||
|
||||
|
|
@ -1802,26 +1799,12 @@ class LightRAG:
|
|||
)
|
||||
)
|
||||
|
||||
# Update pipeline status after getting affected_nodes
|
||||
async with pipeline_status_lock:
|
||||
log_message = f"Found {len(affected_nodes)} affected entities"
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
affected_edges = (
|
||||
await self.chunk_entity_relation_graph.get_edges_by_chunk_ids(
|
||||
list(chunk_ids)
|
||||
)
|
||||
)
|
||||
|
||||
# Update pipeline status after getting affected_edges
|
||||
async with pipeline_status_lock:
|
||||
log_message = f"Found {len(affected_edges)} affected relations"
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to analyze affected graph elements: {e}")
|
||||
raise Exception(f"Failed to analyze graph dependencies: {e}") from e
|
||||
|
|
@ -1839,6 +1822,14 @@ class LightRAG:
|
|||
elif remaining_sources != sources:
|
||||
entities_to_rebuild[node_label] = remaining_sources
|
||||
|
||||
async with pipeline_status_lock:
|
||||
log_message = (
|
||||
f"Found {len(entities_to_rebuild)} affected entities"
|
||||
)
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
# Process relationships
|
||||
for edge_data in affected_edges:
|
||||
src = edge_data.get("source")
|
||||
|
|
@ -1860,6 +1851,14 @@ class LightRAG:
|
|||
elif remaining_sources != sources:
|
||||
relationships_to_rebuild[edge_tuple] = remaining_sources
|
||||
|
||||
async with pipeline_status_lock:
|
||||
log_message = (
|
||||
f"Found {len(relationships_to_rebuild)} affected relations"
|
||||
)
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process graph analysis results: {e}")
|
||||
raise Exception(f"Failed to process graph dependencies: {e}") from e
|
||||
|
|
@ -1943,7 +1942,7 @@ class LightRAG:
|
|||
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
||||
entities_vdb=self.entities_vdb,
|
||||
relationships_vdb=self.relationships_vdb,
|
||||
text_chunks=self.text_chunks,
|
||||
text_chunks_storage=self.text_chunks,
|
||||
llm_response_cache=self.llm_response_cache,
|
||||
global_config=asdict(self),
|
||||
pipeline_status=pipeline_status,
|
||||
|
|
|
|||
|
|
@ -25,6 +25,7 @@ from .utils import (
|
|||
CacheData,
|
||||
get_conversation_turns,
|
||||
use_llm_func_with_cache,
|
||||
update_chunk_cache_list,
|
||||
)
|
||||
from .base import (
|
||||
BaseGraphStorage,
|
||||
|
|
@ -103,8 +104,6 @@ async def _handle_entity_relation_summary(
|
|||
entity_or_relation_name: str,
|
||||
description: str,
|
||||
global_config: dict,
|
||||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
) -> str:
|
||||
"""Handle entity relation summary
|
||||
|
|
@ -247,7 +246,7 @@ async def _rebuild_knowledge_from_chunks(
|
|||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks: BaseKVStorage,
|
||||
text_chunks_storage: BaseKVStorage,
|
||||
llm_response_cache: BaseKVStorage,
|
||||
global_config: dict[str, str],
|
||||
pipeline_status: dict | None = None,
|
||||
|
|
@ -261,6 +260,7 @@ async def _rebuild_knowledge_from_chunks(
|
|||
Args:
|
||||
entities_to_rebuild: Dict mapping entity_name -> set of remaining chunk_ids
|
||||
relationships_to_rebuild: Dict mapping (src, tgt) -> set of remaining chunk_ids
|
||||
text_chunks_data: Pre-loaded chunk data dict {chunk_id: chunk_data}
|
||||
"""
|
||||
if not entities_to_rebuild and not relationships_to_rebuild:
|
||||
return
|
||||
|
|
@ -281,9 +281,12 @@ async def _rebuild_knowledge_from_chunks(
|
|||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
|
||||
# Get cached extraction results for these chunks
|
||||
# Get cached extraction results for these chunks using storage
|
||||
# cached_results: chunk_id -> [list of extraction result from LLM cache sorted by created_at]
|
||||
cached_results = await _get_cached_extraction_results(
|
||||
llm_response_cache, all_referenced_chunk_ids
|
||||
llm_response_cache,
|
||||
all_referenced_chunk_ids,
|
||||
text_chunks_storage=text_chunks_storage,
|
||||
)
|
||||
|
||||
if not cached_results:
|
||||
|
|
@ -299,15 +302,37 @@ async def _rebuild_knowledge_from_chunks(
|
|||
chunk_entities = {} # chunk_id -> {entity_name: [entity_data]}
|
||||
chunk_relationships = {} # chunk_id -> {(src, tgt): [relationship_data]}
|
||||
|
||||
for chunk_id, extraction_result in cached_results.items():
|
||||
for chunk_id, extraction_results in cached_results.items():
|
||||
try:
|
||||
entities, relationships = await _parse_extraction_result(
|
||||
text_chunks=text_chunks,
|
||||
extraction_result=extraction_result,
|
||||
chunk_id=chunk_id,
|
||||
)
|
||||
chunk_entities[chunk_id] = entities
|
||||
chunk_relationships[chunk_id] = relationships
|
||||
# Handle multiple extraction results per chunk
|
||||
chunk_entities[chunk_id] = defaultdict(list)
|
||||
chunk_relationships[chunk_id] = defaultdict(list)
|
||||
|
||||
# process multiple LLM extraction results for a single chunk_id
|
||||
for extraction_result in extraction_results:
|
||||
entities, relationships = await _parse_extraction_result(
|
||||
text_chunks_storage=text_chunks_storage,
|
||||
extraction_result=extraction_result,
|
||||
chunk_id=chunk_id,
|
||||
)
|
||||
|
||||
# Merge entities and relationships from this extraction result
|
||||
# Only keep the first occurrence of each entity_name in the same chunk_id
|
||||
for entity_name, entity_list in entities.items():
|
||||
if (
|
||||
entity_name not in chunk_entities[chunk_id]
|
||||
or len(chunk_entities[chunk_id][entity_name]) == 0
|
||||
):
|
||||
chunk_entities[chunk_id][entity_name].extend(entity_list)
|
||||
|
||||
# Only keep the first occurrence of each rel_key in the same chunk_id
|
||||
for rel_key, rel_list in relationships.items():
|
||||
if (
|
||||
rel_key not in chunk_relationships[chunk_id]
|
||||
or len(chunk_relationships[chunk_id][rel_key]) == 0
|
||||
):
|
||||
chunk_relationships[chunk_id][rel_key].extend(rel_list)
|
||||
|
||||
except Exception as e:
|
||||
status_message = (
|
||||
f"Failed to parse cached extraction result for chunk {chunk_id}: {e}"
|
||||
|
|
@ -387,43 +412,86 @@ async def _rebuild_knowledge_from_chunks(
|
|||
|
||||
|
||||
async def _get_cached_extraction_results(
|
||||
llm_response_cache: BaseKVStorage, chunk_ids: set[str]
|
||||
) -> dict[str, str]:
|
||||
llm_response_cache: BaseKVStorage,
|
||||
chunk_ids: set[str],
|
||||
text_chunks_storage: BaseKVStorage,
|
||||
) -> dict[str, list[str]]:
|
||||
"""Get cached extraction results for specific chunk IDs
|
||||
|
||||
Args:
|
||||
llm_response_cache: LLM response cache storage
|
||||
chunk_ids: Set of chunk IDs to get cached results for
|
||||
text_chunks_data: Pre-loaded chunk data (optional, for performance)
|
||||
text_chunks_storage: Text chunks storage (fallback if text_chunks_data is None)
|
||||
|
||||
Returns:
|
||||
Dict mapping chunk_id -> extraction_result_text
|
||||
Dict mapping chunk_id -> list of extraction_result_text
|
||||
"""
|
||||
cached_results = {}
|
||||
|
||||
# Get all cached data (flattened cache structure)
|
||||
all_cache = await llm_response_cache.get_all()
|
||||
# Collect all LLM cache IDs from chunks
|
||||
all_cache_ids = set()
|
||||
|
||||
for cache_key, cache_entry in all_cache.items():
|
||||
# Read from storage
|
||||
chunk_data_list = await text_chunks_storage.get_by_ids(list(chunk_ids))
|
||||
for chunk_id, chunk_data in zip(chunk_ids, chunk_data_list):
|
||||
if chunk_data and isinstance(chunk_data, dict):
|
||||
llm_cache_list = chunk_data.get("llm_cache_list", [])
|
||||
if llm_cache_list:
|
||||
all_cache_ids.update(llm_cache_list)
|
||||
else:
|
||||
logger.warning(
|
||||
f"Chunk {chunk_id} data is invalid or None: {type(chunk_data)}"
|
||||
)
|
||||
|
||||
if not all_cache_ids:
|
||||
logger.warning(f"No LLM cache IDs found for {len(chunk_ids)} chunk IDs")
|
||||
return cached_results
|
||||
|
||||
# Batch get LLM cache entries
|
||||
cache_data_list = await llm_response_cache.get_by_ids(list(all_cache_ids))
|
||||
|
||||
# Process cache entries and group by chunk_id
|
||||
valid_entries = 0
|
||||
for cache_id, cache_entry in zip(all_cache_ids, cache_data_list):
|
||||
if (
|
||||
isinstance(cache_entry, dict)
|
||||
cache_entry is not None
|
||||
and isinstance(cache_entry, dict)
|
||||
and cache_entry.get("cache_type") == "extract"
|
||||
and cache_entry.get("chunk_id") in chunk_ids
|
||||
):
|
||||
chunk_id = cache_entry["chunk_id"]
|
||||
extraction_result = cache_entry["return"]
|
||||
cached_results[chunk_id] = extraction_result
|
||||
create_time = cache_entry.get(
|
||||
"create_time", 0
|
||||
) # Get creation time, default to 0
|
||||
valid_entries += 1
|
||||
|
||||
logger.debug(
|
||||
f"Found {len(cached_results)} cached extraction results for {len(chunk_ids)} chunk IDs"
|
||||
# Support multiple LLM caches per chunk
|
||||
if chunk_id not in cached_results:
|
||||
cached_results[chunk_id] = []
|
||||
# Store tuple with extraction result and creation time for sorting
|
||||
cached_results[chunk_id].append((extraction_result, create_time))
|
||||
|
||||
# Sort extraction results by create_time for each chunk
|
||||
for chunk_id in cached_results:
|
||||
# Sort by create_time (x[1]), then extract only extraction_result (x[0])
|
||||
cached_results[chunk_id].sort(key=lambda x: x[1])
|
||||
cached_results[chunk_id] = [item[0] for item in cached_results[chunk_id]]
|
||||
|
||||
logger.info(
|
||||
f"Found {valid_entries} valid cache entries, {len(cached_results)} chunks with results"
|
||||
)
|
||||
return cached_results
|
||||
|
||||
|
||||
async def _parse_extraction_result(
|
||||
text_chunks: BaseKVStorage, extraction_result: str, chunk_id: str
|
||||
text_chunks_storage: BaseKVStorage, extraction_result: str, chunk_id: str
|
||||
) -> tuple[dict, dict]:
|
||||
"""Parse cached extraction result using the same logic as extract_entities
|
||||
|
||||
Args:
|
||||
text_chunks_storage: Text chunks storage to get chunk data
|
||||
extraction_result: The cached LLM extraction result
|
||||
chunk_id: The chunk ID for source tracking
|
||||
|
||||
|
|
@ -431,8 +499,8 @@ async def _parse_extraction_result(
|
|||
Tuple of (entities_dict, relationships_dict)
|
||||
"""
|
||||
|
||||
# Get chunk data for file_path
|
||||
chunk_data = await text_chunks.get_by_id(chunk_id)
|
||||
# Get chunk data for file_path from storage
|
||||
chunk_data = await text_chunks_storage.get_by_id(chunk_id)
|
||||
file_path = (
|
||||
chunk_data.get("file_path", "unknown_source")
|
||||
if chunk_data
|
||||
|
|
@ -805,8 +873,6 @@ async def _merge_nodes_then_upsert(
|
|||
entity_name,
|
||||
description,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
else:
|
||||
|
|
@ -969,8 +1035,6 @@ async def _merge_edges_then_upsert(
|
|||
f"({src_id}, {tgt_id})",
|
||||
description,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
else:
|
||||
|
|
@ -1146,6 +1210,7 @@ async def extract_entities(
|
|||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
text_chunks_storage: BaseKVStorage | None = None,
|
||||
) -> list:
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
||||
|
|
@ -1252,6 +1317,9 @@ async def extract_entities(
|
|||
# Get file path from chunk data or use default
|
||||
file_path = chunk_dp.get("file_path", "unknown_source")
|
||||
|
||||
# Create cache keys collector for batch processing
|
||||
cache_keys_collector = []
|
||||
|
||||
# Get initial extraction
|
||||
hint_prompt = entity_extract_prompt.format(
|
||||
**{**context_base, "input_text": content}
|
||||
|
|
@ -1263,7 +1331,10 @@ async def extract_entities(
|
|||
llm_response_cache=llm_response_cache,
|
||||
cache_type="extract",
|
||||
chunk_id=chunk_key,
|
||||
cache_keys_collector=cache_keys_collector,
|
||||
)
|
||||
|
||||
# Store LLM cache reference in chunk (will be handled by use_llm_func_with_cache)
|
||||
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
||||
|
||||
# Process initial extraction with file path
|
||||
|
|
@ -1280,6 +1351,7 @@ async def extract_entities(
|
|||
history_messages=history,
|
||||
cache_type="extract",
|
||||
chunk_id=chunk_key,
|
||||
cache_keys_collector=cache_keys_collector,
|
||||
)
|
||||
|
||||
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
||||
|
|
@ -1310,11 +1382,21 @@ async def extract_entities(
|
|||
llm_response_cache=llm_response_cache,
|
||||
history_messages=history,
|
||||
cache_type="extract",
|
||||
cache_keys_collector=cache_keys_collector,
|
||||
)
|
||||
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
||||
if if_loop_result != "yes":
|
||||
break
|
||||
|
||||
# Batch update chunk's llm_cache_list with all collected cache keys
|
||||
if cache_keys_collector and text_chunks_storage:
|
||||
await update_chunk_cache_list(
|
||||
chunk_key,
|
||||
text_chunks_storage,
|
||||
cache_keys_collector,
|
||||
"entity_extraction",
|
||||
)
|
||||
|
||||
processed_chunks += 1
|
||||
entities_count = len(maybe_nodes)
|
||||
relations_count = len(maybe_edges)
|
||||
|
|
|
|||
|
|
@ -1423,6 +1423,48 @@ def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any
|
|||
return import_class
|
||||
|
||||
|
||||
async def update_chunk_cache_list(
|
||||
chunk_id: str,
|
||||
text_chunks_storage: "BaseKVStorage",
|
||||
cache_keys: list[str],
|
||||
cache_scenario: str = "batch_update",
|
||||
) -> None:
|
||||
"""Update chunk's llm_cache_list with the given cache keys
|
||||
|
||||
Args:
|
||||
chunk_id: Chunk identifier
|
||||
text_chunks_storage: Text chunks storage instance
|
||||
cache_keys: List of cache keys to add to the list
|
||||
cache_scenario: Description of the cache scenario for logging
|
||||
"""
|
||||
if not cache_keys:
|
||||
return
|
||||
|
||||
try:
|
||||
chunk_data = await text_chunks_storage.get_by_id(chunk_id)
|
||||
if chunk_data:
|
||||
# Ensure llm_cache_list exists
|
||||
if "llm_cache_list" not in chunk_data:
|
||||
chunk_data["llm_cache_list"] = []
|
||||
|
||||
# Add cache keys to the list if not already present
|
||||
existing_keys = set(chunk_data["llm_cache_list"])
|
||||
new_keys = [key for key in cache_keys if key not in existing_keys]
|
||||
|
||||
if new_keys:
|
||||
chunk_data["llm_cache_list"].extend(new_keys)
|
||||
|
||||
# Update the chunk in storage
|
||||
await text_chunks_storage.upsert({chunk_id: chunk_data})
|
||||
logger.debug(
|
||||
f"Updated chunk {chunk_id} with {len(new_keys)} cache keys ({cache_scenario})"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to update chunk {chunk_id} with cache references on {cache_scenario}: {e}"
|
||||
)
|
||||
|
||||
|
||||
async def use_llm_func_with_cache(
|
||||
input_text: str,
|
||||
use_llm_func: callable,
|
||||
|
|
@ -1431,6 +1473,7 @@ async def use_llm_func_with_cache(
|
|||
history_messages: list[dict[str, str]] = None,
|
||||
cache_type: str = "extract",
|
||||
chunk_id: str | None = None,
|
||||
cache_keys_collector: list = None,
|
||||
) -> str:
|
||||
"""Call LLM function with cache support
|
||||
|
||||
|
|
@ -1445,6 +1488,8 @@ async def use_llm_func_with_cache(
|
|||
history_messages: History messages list
|
||||
cache_type: Type of cache
|
||||
chunk_id: Chunk identifier to store in cache
|
||||
text_chunks_storage: Text chunks storage to update llm_cache_list
|
||||
cache_keys_collector: Optional list to collect cache keys for batch processing
|
||||
|
||||
Returns:
|
||||
LLM response text
|
||||
|
|
@ -1457,6 +1502,9 @@ async def use_llm_func_with_cache(
|
|||
_prompt = input_text
|
||||
|
||||
arg_hash = compute_args_hash(_prompt)
|
||||
# Generate cache key for this LLM call
|
||||
cache_key = generate_cache_key("default", cache_type, arg_hash)
|
||||
|
||||
cached_return, _1, _2, _3 = await handle_cache(
|
||||
llm_response_cache,
|
||||
arg_hash,
|
||||
|
|
@ -1467,6 +1515,11 @@ async def use_llm_func_with_cache(
|
|||
if cached_return:
|
||||
logger.debug(f"Found cache for {arg_hash}")
|
||||
statistic_data["llm_cache"] += 1
|
||||
|
||||
# Add cache key to collector if provided
|
||||
if cache_keys_collector is not None:
|
||||
cache_keys_collector.append(cache_key)
|
||||
|
||||
return cached_return
|
||||
statistic_data["llm_call"] += 1
|
||||
|
||||
|
|
@ -1491,6 +1544,10 @@ async def use_llm_func_with_cache(
|
|||
),
|
||||
)
|
||||
|
||||
# Add cache key to collector if provided
|
||||
if cache_keys_collector is not None:
|
||||
cache_keys_collector.append(cache_key)
|
||||
|
||||
return res
|
||||
|
||||
# When cache is disabled, directly call LLM
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue