Fix: Remove redundant entity/relation chunk deletions

(cherry picked from commit ea141e2779)
This commit is contained in:
yangdx 2025-11-07 02:56:16 +08:00 committed by Raphaël MANSUY
parent 211dbc3f78
commit 70ba7cd787

View file

@ -22,6 +22,7 @@ from typing import (
Dict,
)
from lightrag.prompt import PROMPTS
from lightrag.exceptions import PipelineCancelledException
from lightrag.constants import (
DEFAULT_MAX_GLEANING,
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
@ -47,6 +48,8 @@ from lightrag.constants import (
DEFAULT_LLM_TIMEOUT,
DEFAULT_EMBEDDING_TIMEOUT,
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
DEFAULT_MAX_FILE_PATHS,
DEFAULT_FILE_PATH_MORE_PLACEHOLDER,
)
from lightrag.utils import get_env_value
@ -84,7 +87,7 @@ from lightrag.operate import (
merge_nodes_and_edges,
kg_query,
naive_query,
_rebuild_knowledge_from_chunks,
rebuild_knowledge_from_chunks,
)
from lightrag.constants import GRAPH_FIELD_SEP
from lightrag.utils import (
@ -393,6 +396,14 @@ class LightRAG:
)
"""Strategy for enforcing source_id limits: IGNORE_NEW or FIFO."""
max_file_paths: int = field(
default=get_env_value("MAX_FILE_PATHS", DEFAULT_MAX_FILE_PATHS, int)
)
"""Maximum number of file paths to store in entity/relation file_path field."""
file_path_more_placeholder: str = field(default=DEFAULT_FILE_PATH_MORE_PLACEHOLDER)
"""Placeholder text when file paths exceed max_file_paths limit."""
addon_params: dict[str, Any] = field(
default_factory=lambda: {
"language": get_env_value(
@ -699,7 +710,7 @@ class LightRAG:
async def check_and_migrate_data(self):
"""Check if data migration is needed and perform migration if necessary"""
async with get_data_init_lock(enable_logging=True):
async with get_data_init_lock():
try:
# Check if migration is needed:
# 1. chunk_entity_relation_graph has entities and relations (count > 0)
@ -877,13 +888,13 @@ class LightRAG:
need_entity_migration = await self.entity_chunks.is_empty()
except Exception as exc: # pragma: no cover - defensive logging
logger.error(f"Failed to check entity chunks storage: {exc}")
need_entity_migration = True
raise exc
try:
need_relation_migration = await self.relation_chunks.is_empty()
except Exception as exc: # pragma: no cover - defensive logging
logger.error(f"Failed to check relation chunks storage: {exc}")
need_relation_migration = True
raise exc
if not need_entity_migration and not need_relation_migration:
return
@ -1593,6 +1604,7 @@ class LightRAG:
"batchs": 0, # Total number of files to be processed
"cur_batch": 0, # Number of files already processed
"request_pending": False, # Clear any previous request
"cancellation_requested": False, # Initialize cancellation flag
"latest_message": "",
}
)
@ -1609,6 +1621,22 @@ class LightRAG:
try:
# Process documents until no more documents or requests
while True:
# Check for cancellation request at the start of main loop
async with pipeline_status_lock:
if pipeline_status.get("cancellation_requested", False):
# Clear pending request
pipeline_status["request_pending"] = False
# Celar cancellation flag
pipeline_status["cancellation_requested"] = False
log_message = "Pipeline cancelled by user"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Exit directly, skipping request_pending check
return
if not to_process_docs:
log_message = "All enqueued documents have been processed"
logger.info(log_message)
@ -1671,14 +1699,25 @@ class LightRAG:
semaphore: asyncio.Semaphore,
) -> None:
"""Process single document"""
# Initialize variables at the start to prevent UnboundLocalError in error handling
file_path = "unknown_source"
current_file_number = 0
file_extraction_stage_ok = False
processing_start_time = int(time.time())
first_stage_tasks = []
entity_relation_task = None
async with semaphore:
nonlocal processed_count
current_file_number = 0
# Initialize to prevent UnboundLocalError in error handling
first_stage_tasks = []
entity_relation_task = None
try:
# Check for cancellation before starting document processing
async with pipeline_status_lock:
if pipeline_status.get("cancellation_requested", False):
raise PipelineCancelledException("User cancelled")
# Get file path from status document
file_path = getattr(
status_doc, "file_path", "unknown_source"
@ -1741,6 +1780,11 @@ class LightRAG:
# Record processing start time
processing_start_time = int(time.time())
# Check for cancellation before entity extraction
async with pipeline_status_lock:
if pipeline_status.get("cancellation_requested", False):
raise PipelineCancelledException("User cancelled")
# Process document in two stages
# Stage 1: Process text chunks and docs (parallel execution)
doc_status_task = asyncio.create_task(
@ -1791,20 +1835,33 @@ class LightRAG:
chunks, pipeline_status, pipeline_status_lock
)
)
await entity_relation_task
chunk_results = await entity_relation_task
file_extraction_stage_ok = True
except Exception as e:
# Log error and update pipeline status
logger.error(traceback.format_exc())
error_msg = f"Failed to extract document {current_file_number}/{total_files}: {file_path}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
traceback.format_exc()
)
pipeline_status["history_messages"].append(error_msg)
# Check if this is a user cancellation
if isinstance(e, PipelineCancelledException):
# User cancellation - log brief message only, no traceback
error_msg = f"User cancelled {current_file_number}/{total_files}: {file_path}"
logger.warning(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
error_msg
)
else:
# Other exceptions - log with traceback
logger.error(traceback.format_exc())
error_msg = f"Failed to extract document {current_file_number}/{total_files}: {file_path}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
traceback.format_exc()
)
pipeline_status["history_messages"].append(
error_msg
)
# Cancel tasks that are not yet completed
all_tasks = first_stage_tasks + (
@ -1814,9 +1871,14 @@ class LightRAG:
if task and not task.done():
task.cancel()
# Persistent llm cache
# Persistent llm cache with error handling
if self.llm_response_cache:
await self.llm_response_cache.index_done_callback()
try:
await self.llm_response_cache.index_done_callback()
except Exception as persist_error:
logger.error(
f"Failed to persist LLM cache: {persist_error}"
)
# Record processing end time for failed case
processing_end_time = int(time.time())
@ -1846,8 +1908,16 @@ class LightRAG:
# Concurrency is controlled by keyed lock for individual entities and relationships
if file_extraction_stage_ok:
try:
# Get chunk_results from entity_relation_task
chunk_results = await entity_relation_task
# Check for cancellation before merge
async with pipeline_status_lock:
if pipeline_status.get(
"cancellation_requested", False
):
raise PipelineCancelledException(
"User cancelled"
)
# Use chunk_results from entity_relation_task
await merge_nodes_and_edges(
chunk_results=chunk_results, # result collected from entity_relation_task
knowledge_graph_inst=self.chunk_entity_relation_graph,
@ -1904,22 +1974,38 @@ class LightRAG:
)
except Exception as e:
# Log error and update pipeline status
logger.error(traceback.format_exc())
error_msg = f"Merging stage failed in document {current_file_number}/{total_files}: {file_path}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
traceback.format_exc()
)
pipeline_status["history_messages"].append(
error_msg
)
# Check if this is a user cancellation
if isinstance(e, PipelineCancelledException):
# User cancellation - log brief message only, no traceback
error_msg = f"User cancelled during merge {current_file_number}/{total_files}: {file_path}"
logger.warning(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
error_msg
)
else:
# Other exceptions - log with traceback
logger.error(traceback.format_exc())
error_msg = f"Merging stage failed in document {current_file_number}/{total_files}: {file_path}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
traceback.format_exc()
)
pipeline_status["history_messages"].append(
error_msg
)
# Persistent llm cache
# Persistent llm cache with error handling
if self.llm_response_cache:
await self.llm_response_cache.index_done_callback()
try:
await self.llm_response_cache.index_done_callback()
except Exception as persist_error:
logger.error(
f"Failed to persist LLM cache: {persist_error}"
)
# Record processing end time for failed case
processing_end_time = int(time.time())
@ -1960,7 +2046,19 @@ class LightRAG:
)
# Wait for all document processing to complete
await asyncio.gather(*doc_tasks)
try:
await asyncio.gather(*doc_tasks)
except PipelineCancelledException:
# Cancel all remaining tasks
for task in doc_tasks:
if not task.done():
task.cancel()
# Wait for all tasks to complete cancellation
await asyncio.wait(doc_tasks, return_when=asyncio.ALL_COMPLETED)
# Exit directly (document statuses already updated in process_document)
return
# Check if there's a pending request to process more documents (with lock)
has_pending_request = False
@ -1991,11 +2089,14 @@ class LightRAG:
to_process_docs.update(pending_docs)
finally:
log_message = "Enqueued document processing pipeline stoped"
log_message = "Enqueued document processing pipeline stopped"
logger.info(log_message)
# Always reset busy status when done or if an exception occurs (with lock)
# Always reset busy status and cancellation flag when done or if an exception occurs (with lock)
async with pipeline_status_lock:
pipeline_status["busy"] = False
pipeline_status["cancellation_requested"] = (
False # Always reset cancellation flag
)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
@ -2783,7 +2884,9 @@ class LightRAG:
# Return the dictionary containing statuses only for the found document IDs
return found_statuses
async def adelete_by_doc_id(self, doc_id: str) -> DeletionResult:
async def adelete_by_doc_id(
self, doc_id: str, delete_llm_cache: bool = False
) -> DeletionResult:
"""Delete a document and all its related data, including chunks, graph elements.
This method orchestrates a comprehensive deletion process for a given document ID.
@ -2793,6 +2896,8 @@ class LightRAG:
Args:
doc_id (str): The unique identifier of the document to be deleted.
delete_llm_cache (bool): Whether to delete cached LLM extraction results
associated with the document. Defaults to False.
Returns:
DeletionResult: An object containing the outcome of the deletion process.
@ -2804,6 +2909,7 @@ class LightRAG:
"""
deletion_operations_started = False
original_exception = None
doc_llm_cache_ids: list[str] = []
# Get pipeline status shared data and lock for status updates
pipeline_status = await get_namespace_data("pipeline_status")
@ -2904,6 +3010,57 @@ class LightRAG:
# Mark that deletion operations have started
deletion_operations_started = True
if delete_llm_cache and chunk_ids:
if not self.llm_response_cache:
logger.info(
"Skipping LLM cache collection for document %s because cache storage is unavailable",
doc_id,
)
elif not self.text_chunks:
logger.info(
"Skipping LLM cache collection for document %s because text chunk storage is unavailable",
doc_id,
)
else:
try:
chunk_data_list = await self.text_chunks.get_by_ids(
list(chunk_ids)
)
seen_cache_ids: set[str] = set()
for chunk_data in chunk_data_list:
if not chunk_data or not isinstance(chunk_data, dict):
continue
cache_ids = chunk_data.get("llm_cache_list", [])
if not isinstance(cache_ids, list):
continue
for cache_id in cache_ids:
if (
isinstance(cache_id, str)
and cache_id
and cache_id not in seen_cache_ids
):
doc_llm_cache_ids.append(cache_id)
seen_cache_ids.add(cache_id)
if doc_llm_cache_ids:
logger.info(
"Collected %d LLM cache entries for document %s",
len(doc_llm_cache_ids),
doc_id,
)
else:
logger.info(
"No LLM cache entries found for document %s", doc_id
)
except Exception as cache_collect_error:
logger.error(
"Failed to collect LLM cache ids for document %s: %s",
doc_id,
cache_collect_error,
)
raise Exception(
f"Failed to collect LLM cache ids for document {doc_id}: {cache_collect_error}"
) from cache_collect_error
# 4. Analyze entities and relationships that will be affected
entities_to_delete = set()
entities_to_rebuild = {} # entity_name -> remaining chunk id list
@ -3078,38 +3235,31 @@ class LightRAG:
if entity_chunk_updates and self.entity_chunks:
entity_upsert_payload = {}
entity_delete_ids: set[str] = set()
for entity_name, remaining in entity_chunk_updates.items():
if not remaining:
entity_delete_ids.add(entity_name)
else:
entity_upsert_payload[entity_name] = {
"chunk_ids": remaining,
"count": len(remaining),
"updated_at": current_time,
}
if entity_delete_ids:
await self.entity_chunks.delete(list(entity_delete_ids))
# Empty entities are deleted alongside graph nodes later
continue
entity_upsert_payload[entity_name] = {
"chunk_ids": remaining,
"count": len(remaining),
"updated_at": current_time,
}
if entity_upsert_payload:
await self.entity_chunks.upsert(entity_upsert_payload)
if relation_chunk_updates and self.relation_chunks:
relation_upsert_payload = {}
relation_delete_ids: set[str] = set()
for edge_tuple, remaining in relation_chunk_updates.items():
storage_key = make_relation_chunk_key(*edge_tuple)
if not remaining:
relation_delete_ids.add(storage_key)
else:
relation_upsert_payload[storage_key] = {
"chunk_ids": remaining,
"count": len(remaining),
"updated_at": current_time,
}
# Empty relations are deleted alongside graph edges later
continue
storage_key = make_relation_chunk_key(*edge_tuple)
relation_upsert_payload[storage_key] = {
"chunk_ids": remaining,
"count": len(remaining),
"updated_at": current_time,
}
if relation_delete_ids:
await self.relation_chunks.delete(list(relation_delete_ids))
if relation_upsert_payload:
await self.relation_chunks.upsert(relation_upsert_payload)
@ -3136,39 +3286,10 @@ class LightRAG:
logger.error(f"Failed to delete chunks: {e}")
raise Exception(f"Failed to delete document chunks: {e}") from e
# 6. Delete entities that have no remaining sources
if entities_to_delete:
try:
# Delete from vector database
entity_vdb_ids = [
compute_mdhash_id(entity, prefix="ent-")
for entity in entities_to_delete
]
await self.entities_vdb.delete(entity_vdb_ids)
# Delete from graph
await self.chunk_entity_relation_graph.remove_nodes(
list(entities_to_delete)
)
# Delete from entity_chunks storage
if self.entity_chunks:
await self.entity_chunks.delete(list(entities_to_delete))
async with pipeline_status_lock:
log_message = f"Successfully deleted {len(entities_to_delete)} entities"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to delete entities: {e}")
raise Exception(f"Failed to delete entities: {e}") from e
# 7. Delete relationships that have no remaining sources
# 6. Delete relationships that have no remaining sources
if relationships_to_delete:
try:
# Delete from vector database
# Delete from relation vdb
rel_ids_to_delete = []
for src, tgt in relationships_to_delete:
rel_ids_to_delete.extend(
@ -3202,13 +3323,105 @@ class LightRAG:
logger.error(f"Failed to delete relationships: {e}")
raise Exception(f"Failed to delete relationships: {e}") from e
# 7. Delete entities that have no remaining sources
if entities_to_delete:
try:
# Batch get all edges for entities to avoid N+1 query problem
nodes_edges_dict = await self.chunk_entity_relation_graph.get_nodes_edges_batch(
list(entities_to_delete)
)
# Debug: Check and log all edges before deleting nodes
edges_to_delete = set()
edges_still_exist = 0
for entity, edges in nodes_edges_dict.items():
if edges:
for src, tgt in edges:
# Normalize edge representation (sorted for consistency)
edge_tuple = tuple(sorted((src, tgt)))
edges_to_delete.add(edge_tuple)
if (
src in entities_to_delete
and tgt in entities_to_delete
):
logger.warning(
f"Edge still exists: {src} <-> {tgt}"
)
elif src in entities_to_delete:
logger.warning(
f"Edge still exists: {src} --> {tgt}"
)
else:
logger.warning(
f"Edge still exists: {src} <-- {tgt}"
)
edges_still_exist += 1
if edges_still_exist:
logger.warning(
f"⚠️ {edges_still_exist} entities still has edges before deletion"
)
# Clean residual edges from VDB and storage before deleting nodes
if edges_to_delete:
# Delete from relationships_vdb
rel_ids_to_delete = []
for src, tgt in edges_to_delete:
rel_ids_to_delete.extend(
[
compute_mdhash_id(src + tgt, prefix="rel-"),
compute_mdhash_id(tgt + src, prefix="rel-"),
]
)
await self.relationships_vdb.delete(rel_ids_to_delete)
# Delete from relation_chunks storage
if self.relation_chunks:
relation_storage_keys = [
make_relation_chunk_key(src, tgt)
for src, tgt in edges_to_delete
]
await self.relation_chunks.delete(relation_storage_keys)
logger.info(
f"Cleaned {len(edges_to_delete)} residual edges from VDB and chunk-tracking storage"
)
# Delete from graph (edges will be auto-deleted with nodes)
await self.chunk_entity_relation_graph.remove_nodes(
list(entities_to_delete)
)
# Delete from vector vdb
entity_vdb_ids = [
compute_mdhash_id(entity, prefix="ent-")
for entity in entities_to_delete
]
await self.entities_vdb.delete(entity_vdb_ids)
# Delete from entity_chunks storage
if self.entity_chunks:
await self.entity_chunks.delete(list(entities_to_delete))
async with pipeline_status_lock:
log_message = f"Successfully deleted {len(entities_to_delete)} entities"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to delete entities: {e}")
raise Exception(f"Failed to delete entities: {e}") from e
# Persist changes to graph database before releasing graph database lock
await self._insert_done()
# 8. Rebuild entities and relationships from remaining chunks
if entities_to_rebuild or relationships_to_rebuild:
try:
await _rebuild_knowledge_from_chunks(
await rebuild_knowledge_from_chunks(
entities_to_rebuild=entities_to_rebuild,
relationships_to_rebuild=relationships_to_rebuild,
knowledge_graph_inst=self.chunk_entity_relation_graph,
@ -3245,6 +3458,23 @@ class LightRAG:
logger.error(f"Failed to delete document and status: {e}")
raise Exception(f"Failed to delete document and status: {e}") from e
if delete_llm_cache and doc_llm_cache_ids and self.llm_response_cache:
try:
await self.llm_response_cache.delete(doc_llm_cache_ids)
cache_log_message = f"Successfully deleted {len(doc_llm_cache_ids)} LLM cache entries for document {doc_id}"
logger.info(cache_log_message)
async with pipeline_status_lock:
pipeline_status["latest_message"] = cache_log_message
pipeline_status["history_messages"].append(cache_log_message)
log_message = cache_log_message
except Exception as cache_delete_error:
log_message = f"Failed to delete LLM cache for document {doc_id}: {cache_delete_error}"
logger.error(log_message)
logger.error(traceback.format_exc())
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
return DeletionResult(
status="success",
doc_id=doc_id,
@ -3409,7 +3639,11 @@ class LightRAG:
)
async def aedit_entity(
self, entity_name: str, updated_data: dict[str, str], allow_rename: bool = True
self,
entity_name: str,
updated_data: dict[str, str],
allow_rename: bool = True,
allow_merge: bool = False,
) -> dict[str, Any]:
"""Asynchronously edit entity information.
@ -3420,6 +3654,7 @@ class LightRAG:
entity_name: Name of the entity to edit
updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "entity_type": "new type"}
allow_rename: Whether to allow entity renaming, defaults to True
allow_merge: Whether to merge into an existing entity when renaming to an existing name
Returns:
Dictionary containing updated entity information
@ -3433,16 +3668,21 @@ class LightRAG:
entity_name,
updated_data,
allow_rename,
allow_merge,
self.entity_chunks,
self.relation_chunks,
)
def edit_entity(
self, entity_name: str, updated_data: dict[str, str], allow_rename: bool = True
self,
entity_name: str,
updated_data: dict[str, str],
allow_rename: bool = True,
allow_merge: bool = False,
) -> dict[str, Any]:
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.aedit_entity(entity_name, updated_data, allow_rename)
self.aedit_entity(entity_name, updated_data, allow_rename, allow_merge)
)
async def aedit_relation(