Merge pull request #1766 from HKUDS/fix-memgraph-max-nodes-issue
Fix Memgraph get_knowledge_graph issues
This commit is contained in:
commit
6d1260aafa
2 changed files with 64 additions and 66 deletions
|
|
@ -181,9 +181,9 @@ The command-line `workspace` argument and the `WORKSPACE` environment variable i
|
||||||
- **For local file-based databases, data isolation is achieved through workspace subdirectories:** `JsonKVStorage`, `JsonDocStatusStorage`, `NetworkXStorage`, `NanoVectorDBStorage`, `FaissVectorDBStorage`.
|
- **For local file-based databases, data isolation is achieved through workspace subdirectories:** `JsonKVStorage`, `JsonDocStatusStorage`, `NetworkXStorage`, `NanoVectorDBStorage`, `FaissVectorDBStorage`.
|
||||||
- **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `QdrantVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
|
- **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `QdrantVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
|
||||||
- **For relational databases, data isolation is achieved by adding a `workspace` field to the tables for logical data separation:** `PGKVStorage`, `PGVectorStorage`, `PGDocStatusStorage`.
|
- **For relational databases, data isolation is achieved by adding a `workspace` field to the tables for logical data separation:** `PGKVStorage`, `PGVectorStorage`, `PGDocStatusStorage`.
|
||||||
- **For the Neo4j graph database, logical data isolation is achieved through labels:** `Neo4JStorage`
|
- **For graph databases, logical data isolation is achieved through labels:** `Neo4JStorage`, `MemgraphStorage`
|
||||||
|
|
||||||
To maintain compatibility with legacy data, the default workspace for PostgreSQL is `default` and for Neo4j is `base` when no workspace is configured. For all external storages, the system provides dedicated workspace environment variables to override the common `WORKSPACE` environment variable configuration. These storage-specific workspace environment variables are: `REDIS_WORKSPACE`, `MILVUS_WORKSPACE`, `QDRANT_WORKSPACE`, `MONGODB_WORKSPACE`, `POSTGRES_WORKSPACE`, `NEO4J_WORKSPACE`.
|
To maintain compatibility with legacy data, the default workspace for PostgreSQL is `default` and for Neo4j is `base` when no workspace is configured. For all external storages, the system provides dedicated workspace environment variables to override the common `WORKSPACE` environment variable configuration. These storage-specific workspace environment variables are: `REDIS_WORKSPACE`, `MILVUS_WORKSPACE`, `QDRANT_WORKSPACE`, `MONGODB_WORKSPACE`, `POSTGRES_WORKSPACE`, `NEO4J_WORKSPACE`, `MEMGRAPH_WORKSPACE`.
|
||||||
|
|
||||||
### Multiple workers for Gunicorn + Uvicorn
|
### Multiple workers for Gunicorn + Uvicorn
|
||||||
|
|
||||||
|
|
@ -396,6 +396,7 @@ MongoKVStorage MongoDB
|
||||||
NetworkXStorage NetworkX (default)
|
NetworkXStorage NetworkX (default)
|
||||||
Neo4JStorage Neo4J
|
Neo4JStorage Neo4J
|
||||||
PGGraphStorage PostgreSQL with AGE plugin
|
PGGraphStorage PostgreSQL with AGE plugin
|
||||||
|
MemgraphStorage. Memgraph
|
||||||
```
|
```
|
||||||
|
|
||||||
> Testing has shown that Neo4J delivers superior performance in production environments compared to PostgreSQL with AGE plugin.
|
> Testing has shown that Neo4J delivers superior performance in production environments compared to PostgreSQL with AGE plugin.
|
||||||
|
|
|
||||||
|
|
@ -435,7 +435,7 @@ class MemgraphStorage(BaseGraphStorage):
|
||||||
|
|
||||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
||||||
"""
|
"""
|
||||||
Upsert a node in the Neo4j database.
|
Upsert a node in the Memgraph database.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_id: The unique identifier for the node (used as label)
|
node_id: The unique identifier for the node (used as label)
|
||||||
|
|
@ -448,7 +448,9 @@ class MemgraphStorage(BaseGraphStorage):
|
||||||
properties = node_data
|
properties = node_data
|
||||||
entity_type = properties["entity_type"]
|
entity_type = properties["entity_type"]
|
||||||
if "entity_id" not in properties:
|
if "entity_id" not in properties:
|
||||||
raise ValueError("Neo4j: node properties must contain an 'entity_id' field")
|
raise ValueError(
|
||||||
|
"Memgraph: node properties must contain an 'entity_id' field"
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
async with self._driver.session(database=self._DATABASE) as session:
|
async with self._driver.session(database=self._DATABASE) as session:
|
||||||
|
|
@ -732,7 +734,7 @@ class MemgraphStorage(BaseGraphStorage):
|
||||||
self,
|
self,
|
||||||
node_label: str,
|
node_label: str,
|
||||||
max_depth: int = 3,
|
max_depth: int = 3,
|
||||||
max_nodes: int = MAX_GRAPH_NODES,
|
max_nodes: int = None,
|
||||||
) -> KnowledgeGraph:
|
) -> KnowledgeGraph:
|
||||||
"""
|
"""
|
||||||
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
|
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
|
||||||
|
|
@ -740,120 +742,118 @@ class MemgraphStorage(BaseGraphStorage):
|
||||||
Args:
|
Args:
|
||||||
node_label: Label of the starting node, * means all nodes
|
node_label: Label of the starting node, * means all nodes
|
||||||
max_depth: Maximum depth of the subgraph, Defaults to 3
|
max_depth: Maximum depth of the subgraph, Defaults to 3
|
||||||
max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000
|
max_nodes: Maximum nodes to return by BFS, Defaults to 1000
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
|
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
|
||||||
indicating whether the graph was truncated due to max_nodes limit
|
indicating whether the graph was truncated due to max_nodes limit
|
||||||
|
|
||||||
Raises:
|
|
||||||
Exception: If there is an error executing the query
|
|
||||||
"""
|
"""
|
||||||
if self._driver is None:
|
# Get max_nodes from global_config if not provided
|
||||||
raise RuntimeError(
|
if max_nodes is None:
|
||||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
max_nodes = self.global_config.get("max_graph_nodes", 1000)
|
||||||
)
|
else:
|
||||||
|
# Limit max_nodes to not exceed global_config max_graph_nodes
|
||||||
|
max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000))
|
||||||
|
|
||||||
|
workspace_label = self._get_workspace_label()
|
||||||
result = KnowledgeGraph()
|
result = KnowledgeGraph()
|
||||||
seen_nodes = set()
|
seen_nodes = set()
|
||||||
seen_edges = set()
|
seen_edges = set()
|
||||||
workspace_label = self._get_workspace_label()
|
|
||||||
async with self._driver.session(
|
async with self._driver.session(
|
||||||
database=self._DATABASE, default_access_mode="READ"
|
database=self._DATABASE, default_access_mode="READ"
|
||||||
) as session:
|
) as session:
|
||||||
try:
|
try:
|
||||||
if node_label == "*":
|
if node_label == "*":
|
||||||
# First check if database has any nodes
|
# First check total node count to determine if graph is truncated
|
||||||
count_query = "MATCH (n) RETURN count(n) as total"
|
count_query = (
|
||||||
|
f"MATCH (n:`{workspace_label}`) RETURN count(n) as total"
|
||||||
|
)
|
||||||
count_result = None
|
count_result = None
|
||||||
total_count = 0
|
|
||||||
try:
|
try:
|
||||||
count_result = await session.run(count_query)
|
count_result = await session.run(count_query)
|
||||||
count_record = await count_result.single()
|
count_record = await count_result.single()
|
||||||
if count_record:
|
|
||||||
total_count = count_record["total"]
|
if count_record and count_record["total"] > max_nodes:
|
||||||
if total_count == 0:
|
result.is_truncated = True
|
||||||
logger.debug("No nodes found in database")
|
logger.info(
|
||||||
return result
|
f"Graph truncated: {count_record['total']} nodes found, limited to {max_nodes}"
|
||||||
if total_count > max_nodes:
|
)
|
||||||
result.is_truncated = True
|
|
||||||
logger.info(
|
|
||||||
f"Graph truncated: {total_count} nodes found, limited to {max_nodes}"
|
|
||||||
)
|
|
||||||
finally:
|
finally:
|
||||||
if count_result:
|
if count_result:
|
||||||
await count_result.consume()
|
await count_result.consume()
|
||||||
|
|
||||||
# Run the main query to get nodes with highest degree
|
# Run main query to get nodes with highest degree
|
||||||
main_query = f"""
|
main_query = f"""
|
||||||
MATCH (n:`{workspace_label}`)
|
MATCH (n:`{workspace_label}`)
|
||||||
OPTIONAL MATCH (n)-[r]-()
|
OPTIONAL MATCH (n)-[r]-()
|
||||||
WITH n, COALESCE(count(r), 0) AS degree
|
WITH n, COALESCE(count(r), 0) AS degree
|
||||||
ORDER BY degree DESC
|
ORDER BY degree DESC
|
||||||
LIMIT $max_nodes
|
LIMIT $max_nodes
|
||||||
WITH collect(n) AS kept_nodes
|
WITH collect({{node: n}}) AS filtered_nodes
|
||||||
MATCH (a)-[r]-(b)
|
UNWIND filtered_nodes AS node_info
|
||||||
|
WITH collect(node_info.node) AS kept_nodes, filtered_nodes
|
||||||
|
OPTIONAL MATCH (a)-[r]-(b)
|
||||||
WHERE a IN kept_nodes AND b IN kept_nodes
|
WHERE a IN kept_nodes AND b IN kept_nodes
|
||||||
RETURN [node IN kept_nodes | {{node: node}}] AS node_info,
|
RETURN filtered_nodes AS node_info,
|
||||||
collect(DISTINCT r) AS relationships
|
collect(DISTINCT r) AS relationships
|
||||||
"""
|
"""
|
||||||
result_set = None
|
result_set = None
|
||||||
try:
|
try:
|
||||||
result_set = await session.run(
|
result_set = await session.run(
|
||||||
main_query, {"max_nodes": max_nodes}
|
main_query,
|
||||||
|
{"max_nodes": max_nodes},
|
||||||
)
|
)
|
||||||
record = await result_set.single()
|
record = await result_set.single()
|
||||||
if not record:
|
|
||||||
logger.debug("No record returned from main query")
|
|
||||||
return result
|
|
||||||
finally:
|
finally:
|
||||||
if result_set:
|
if result_set:
|
||||||
await result_set.consume()
|
await result_set.consume()
|
||||||
|
|
||||||
else:
|
else:
|
||||||
bfs_query = f"""
|
# Run subgraph query for specific node_label
|
||||||
|
subgraph_query = f"""
|
||||||
MATCH (start:`{workspace_label}`)
|
MATCH (start:`{workspace_label}`)
|
||||||
WHERE start.entity_id = $entity_id
|
WHERE start.entity_id = $entity_id
|
||||||
WITH start
|
|
||||||
CALL {{
|
MATCH path = (start)-[*BFS 0..{max_depth}]-(end:`{workspace_label}`)
|
||||||
WITH start
|
WHERE ALL(n IN nodes(path) WHERE '{workspace_label}' IN labels(n))
|
||||||
MATCH path = (start)-[*0..{max_depth}]-(node)
|
WITH collect(DISTINCT end) + start AS all_nodes_unlimited
|
||||||
WITH nodes(path) AS path_nodes, relationships(path) AS path_rels
|
|
||||||
UNWIND path_nodes AS n
|
|
||||||
WITH collect(DISTINCT n) AS all_nodes, collect(DISTINCT path_rels) AS all_rel_lists
|
|
||||||
WITH all_nodes, reduce(r = [], x IN all_rel_lists | r + x) AS all_rels
|
|
||||||
RETURN all_nodes, all_rels
|
|
||||||
}}
|
|
||||||
WITH all_nodes AS nodes, all_rels AS relationships, size(all_nodes) AS total_nodes
|
|
||||||
WITH
|
WITH
|
||||||
CASE
|
CASE
|
||||||
WHEN total_nodes <= {max_nodes} THEN nodes
|
WHEN size(all_nodes_unlimited) <= $max_nodes THEN all_nodes_unlimited
|
||||||
ELSE nodes[0..{max_nodes}]
|
ELSE all_nodes_unlimited[0..$max_nodes]
|
||||||
END AS limited_nodes,
|
END AS limited_nodes,
|
||||||
relationships,
|
size(all_nodes_unlimited) > $max_nodes AS is_truncated
|
||||||
total_nodes,
|
|
||||||
total_nodes > {max_nodes} AS is_truncated
|
UNWIND limited_nodes AS n
|
||||||
|
MATCH (n)-[r]-(m)
|
||||||
|
WHERE m IN limited_nodes
|
||||||
|
WITH collect(DISTINCT n) AS limited_nodes, collect(DISTINCT r) AS relationships, is_truncated
|
||||||
|
|
||||||
RETURN
|
RETURN
|
||||||
[node IN limited_nodes | {{node: node}}] AS node_info,
|
[node IN limited_nodes | {{node: node}}] AS node_info,
|
||||||
relationships,
|
relationships,
|
||||||
total_nodes,
|
|
||||||
is_truncated
|
is_truncated
|
||||||
"""
|
"""
|
||||||
|
|
||||||
result_set = None
|
result_set = None
|
||||||
try:
|
try:
|
||||||
result_set = await session.run(
|
result_set = await session.run(
|
||||||
bfs_query,
|
subgraph_query,
|
||||||
{
|
{
|
||||||
"entity_id": node_label,
|
"entity_id": node_label,
|
||||||
|
"max_nodes": max_nodes,
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
record = await result_set.single()
|
record = await result_set.single()
|
||||||
|
|
||||||
|
# If no record found, return empty KnowledgeGraph
|
||||||
if not record:
|
if not record:
|
||||||
logger.debug(f"No nodes found for entity_id: {node_label}")
|
logger.debug(f"No nodes found for entity_id: {node_label}")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
# Check if the query indicates truncation
|
# Check if the result was truncated
|
||||||
if "is_truncated" in record and record["is_truncated"]:
|
if record.get("is_truncated"):
|
||||||
result.is_truncated = True
|
result.is_truncated = True
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
|
f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
|
||||||
|
|
@ -863,13 +863,11 @@ class MemgraphStorage(BaseGraphStorage):
|
||||||
if result_set:
|
if result_set:
|
||||||
await result_set.consume()
|
await result_set.consume()
|
||||||
|
|
||||||
# Process the record if it exists
|
if record:
|
||||||
if record and record["node_info"]:
|
|
||||||
for node_info in record["node_info"]:
|
for node_info in record["node_info"]:
|
||||||
node = node_info["node"]
|
node = node_info["node"]
|
||||||
node_id = node.id
|
node_id = node.id
|
||||||
if node_id not in seen_nodes:
|
if node_id not in seen_nodes:
|
||||||
seen_nodes.add(node_id)
|
|
||||||
result.nodes.append(
|
result.nodes.append(
|
||||||
KnowledgeGraphNode(
|
KnowledgeGraphNode(
|
||||||
id=f"{node_id}",
|
id=f"{node_id}",
|
||||||
|
|
@ -877,11 +875,11 @@ class MemgraphStorage(BaseGraphStorage):
|
||||||
properties=dict(node),
|
properties=dict(node),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
seen_nodes.add(node_id)
|
||||||
|
|
||||||
for rel in record["relationships"]:
|
for rel in record["relationships"]:
|
||||||
edge_id = rel.id
|
edge_id = rel.id
|
||||||
if edge_id not in seen_edges:
|
if edge_id not in seen_edges:
|
||||||
seen_edges.add(edge_id)
|
|
||||||
start = rel.start_node
|
start = rel.start_node
|
||||||
end = rel.end_node
|
end = rel.end_node
|
||||||
result.edges.append(
|
result.edges.append(
|
||||||
|
|
@ -893,14 +891,13 @@ class MemgraphStorage(BaseGraphStorage):
|
||||||
properties=dict(rel),
|
properties=dict(rel),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
seen_edges.add(edge_id)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||||
)
|
)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error getting knowledge graph: {str(e)}")
|
logger.warning(f"Memgraph error during subgraph query: {str(e)}")
|
||||||
# Return empty but properly initialized KnowledgeGraph on error
|
|
||||||
return KnowledgeGraph()
|
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue