Update documentation with LLM selection guidelines and API improvements
This commit is contained in:
parent
4b2ef71c25
commit
62cdc7d7eb
4 changed files with 15 additions and 2 deletions
|
|
@ -142,6 +142,8 @@ LightRAG对大型语言模型(LLM)的能力要求远高于传统RAG,因为
|
|||
- **LLM选型**:
|
||||
- 推荐选用参数量至少为32B的LLM。
|
||||
- 上下文长度至少为32KB,推荐达到64KB。
|
||||
- 在文档索引阶段不建议选择推理模型。
|
||||
- 在查询阶段建议选择比索引阶段能力更强的模型,以达到更高的查询效果。
|
||||
- **Embedding模型**:
|
||||
- 高性能的Embedding模型对RAG至关重要。
|
||||
- 推荐使用主流的多语言Embedding模型,例如:BAAI/bge-m3 和 text-embedding-3-large。
|
||||
|
|
|
|||
|
|
@ -141,6 +141,8 @@ LightRAG's demands on the capabilities of Large Language Models (LLMs) are signi
|
|||
- **LLM Selection**:
|
||||
- It is recommended to use an LLM with at least 32 billion parameters.
|
||||
- The context length should be at least 32KB, with 64KB being recommended.
|
||||
- It is not recommended to choose reasoning models during the document indexing stage.
|
||||
- During the query stage, it is recommended to choose models with stronger capabilities than those used in the indexing stage to achieve better query results.
|
||||
- **Embedding Model**:
|
||||
- A high-performance Embedding model is essential for RAG.
|
||||
- We recommend using mainstream multilingual Embedding models, such as: `BAAI/bge-m3` and `text-embedding-3-large`.
|
||||
|
|
@ -1287,8 +1289,10 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
|
|||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Initialize storage (this will load existing data if available)
|
||||
await lightrag_instance.initialize_storages()
|
||||
|
||||
# Now initialize RAGAnything with the existing LightRAG instance
|
||||
rag = RAGAnything(
|
||||
lightrag=lightrag_instance, # Pass the existing LightRAG instance
|
||||
|
|
@ -1317,12 +1321,14 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
|
|||
)
|
||||
# Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance
|
||||
)
|
||||
|
||||
# Query the existing knowledge base
|
||||
result = await rag.query_with_multimodal(
|
||||
"What data has been processed in this LightRAG instance?",
|
||||
mode="hybrid"
|
||||
)
|
||||
print("Query result:", result)
|
||||
|
||||
# Add new multimodal documents to the existing LightRAG instance
|
||||
await rag.process_document_complete(
|
||||
file_path="path/to/new/multimodal_document.pdf",
|
||||
|
|
|
|||
|
|
@ -357,7 +357,7 @@ API 服务器可以通过三种方式配置(优先级从高到低):
|
|||
LightRAG 支持绑定到各种 LLM/嵌入后端:
|
||||
|
||||
* ollama
|
||||
* openai 和 openai 兼容
|
||||
* openai (含openai 兼容)
|
||||
* azure_openai
|
||||
* lollms
|
||||
* aws_bedrock
|
||||
|
|
@ -372,7 +372,10 @@ lightrag-server --llm-binding ollama --help
|
|||
lightrag-server --embedding-binding ollama --help
|
||||
```
|
||||
|
||||
> 请使用openai兼容方式访问OpenRouter或vLLM部署的LLM。可以通过 `OPENAI_LLM_EXTRA_BODY` 环境变量给OpenRouter或vLLM传递额外的参数,实现推理模式的关闭或者其它个性化控制。
|
||||
|
||||
### 实体提取配置
|
||||
|
||||
* ENABLE_LLM_CACHE_FOR_EXTRACT:为实体提取启用 LLM 缓存(默认:true)
|
||||
|
||||
在测试环境中将 `ENABLE_LLM_CACHE_FOR_EXTRACT` 设置为 true 以减少 LLM 调用成本是很常见的做法。
|
||||
|
|
|
|||
|
|
@ -360,7 +360,7 @@ Most of the configurations come with default settings; check out the details in
|
|||
LightRAG supports binding to various LLM/Embedding backends:
|
||||
|
||||
* ollama
|
||||
* openai & openai compatible
|
||||
* openai (including openai compatible)
|
||||
* azure_openai
|
||||
* lollms
|
||||
* aws_bedrock
|
||||
|
|
@ -374,6 +374,8 @@ lightrag-server --llm-binding ollama --help
|
|||
lightrag-server --embedding-binding ollama --help
|
||||
```
|
||||
|
||||
> Please use OpenAI-compatible method to access LLMs deployed by OpenRouter or vLLM. You can pass additional parameters to OpenRouter or vLLM through the `OPENAI_LLM_EXTRA_BODY` environment variable to disable reasoning mode or achieve other personalized controls.
|
||||
|
||||
### Entity Extraction Configuration
|
||||
* ENABLE_LLM_CACHE_FOR_EXTRACT: Enable LLM cache for entity extraction (default: true)
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue