cherry-pick 9f44e89d
This commit is contained in:
parent
3ae2043e7b
commit
593b277945
2 changed files with 267 additions and 47 deletions
|
|
@ -588,6 +588,69 @@ You can test the API endpoints using the provided curl commands or through the S
|
|||
4. Query the system using the query endpoints
|
||||
5. Trigger document scan if new files are put into the inputs directory
|
||||
|
||||
### Graph Manipulation Endpoints
|
||||
|
||||
LightRAG provides REST API endpoints for direct knowledge graph manipulation:
|
||||
|
||||
#### Create Entity
|
||||
|
||||
Create a new entity in the knowledge graph:
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/graph/entity/create" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"entity_name": "Tesla",
|
||||
"entity_data": {
|
||||
"description": "Electric vehicle manufacturer",
|
||||
"entity_type": "ORGANIZATION"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
#### Create Relationship
|
||||
|
||||
Create a new relationship between two existing entities:
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/graph/relation/create" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"source_entity": "Elon Musk",
|
||||
"target_entity": "Tesla",
|
||||
"relation_data": {
|
||||
"description": "Elon Musk is the CEO of Tesla",
|
||||
"keywords": "CEO, founder",
|
||||
"weight": 1.0
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
#### Merge Entities
|
||||
|
||||
Consolidate duplicate or misspelled entities while preserving all relationships:
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/graph/entities/merge" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"entities_to_change": ["Elon Msk", "Ellon Musk"],
|
||||
"entity_to_change_into": "Elon Musk"
|
||||
}'
|
||||
```
|
||||
|
||||
**What the merge operation does:**
|
||||
- Deletes the specified source entities
|
||||
- Transfers all relationships from source entities to the target entity
|
||||
- Intelligently merges duplicate relationships
|
||||
- Updates vector embeddings for accurate retrieval
|
||||
- Preserves the entire graph structure
|
||||
|
||||
This is particularly useful for:
|
||||
- Fixing spelling errors in entity names
|
||||
- Consolidating duplicate entities discovered after document processing
|
||||
- Cleaning up the knowledge graph for better query performance
|
||||
|
||||
## Asynchronous Document Indexing with Progress Tracking
|
||||
|
||||
LightRAG implements asynchronous document indexing to enable frontend monitoring and querying of document processing progress. Upon uploading files or inserting text through designated endpoints, a unique Track ID is returned to facilitate real-time progress monitoring.
|
||||
|
|
|
|||
|
|
@ -7,12 +7,8 @@ import traceback
|
|||
from fastapi import APIRouter, Depends, Query, HTTPException
|
||||
from pydantic import BaseModel
|
||||
|
||||
from lightrag import LightRAG
|
||||
from lightrag.utils import logger
|
||||
from lightrag.models.tenant import TenantContext
|
||||
from lightrag.tenant_rag_manager import TenantRAGManager
|
||||
from ..utils_api import get_combined_auth_dependency
|
||||
from ..dependencies import get_tenant_context_optional
|
||||
|
||||
router = APIRouter(tags=["graph"])
|
||||
|
||||
|
|
@ -29,29 +25,35 @@ class RelationUpdateRequest(BaseModel):
|
|||
updated_data: Dict[str, Any]
|
||||
|
||||
|
||||
def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optional[TenantRAGManager] = None):
|
||||
class EntityMergeRequest(BaseModel):
|
||||
entities_to_change: list[str]
|
||||
entity_to_change_into: str
|
||||
|
||||
|
||||
class EntityCreateRequest(BaseModel):
|
||||
entity_name: str
|
||||
entity_data: Dict[str, Any]
|
||||
|
||||
|
||||
class RelationCreateRequest(BaseModel):
|
||||
source_entity: str
|
||||
target_entity: str
|
||||
relation_data: Dict[str, Any]
|
||||
|
||||
|
||||
def create_graph_routes(rag, api_key: Optional[str] = None):
|
||||
combined_auth = get_combined_auth_dependency(api_key)
|
||||
|
||||
async def get_tenant_rag(tenant_context: Optional[TenantContext] = Depends(get_tenant_context_optional)) -> LightRAG:
|
||||
"""Dependency to get tenant-specific RAG instance for graph operations"""
|
||||
if rag_manager and tenant_context and tenant_context.tenant_id and tenant_context.kb_id:
|
||||
return await rag_manager.get_rag_instance(
|
||||
tenant_context.tenant_id,
|
||||
tenant_context.kb_id,
|
||||
tenant_context.user_id # Pass user_id for security validation
|
||||
)
|
||||
return rag
|
||||
|
||||
@router.get("/graph/label/list", dependencies=[Depends(combined_auth)])
|
||||
async def get_graph_labels(tenant_rag: LightRAG = Depends(get_tenant_rag)):
|
||||
async def get_graph_labels():
|
||||
"""
|
||||
Get all graph labels (tenant-scoped)
|
||||
Get all graph labels
|
||||
|
||||
Returns:
|
||||
List[str]: List of graph labels for the selected tenant/KB
|
||||
List[str]: List of graph labels
|
||||
"""
|
||||
try:
|
||||
return await tenant_rag.get_graph_labels()
|
||||
return await rag.get_graph_labels()
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting graph labels: {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
|
@ -64,19 +66,18 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
limit: int = Query(
|
||||
300, description="Maximum number of popular labels to return", ge=1, le=1000
|
||||
),
|
||||
tenant_rag: LightRAG = Depends(get_tenant_rag),
|
||||
):
|
||||
"""
|
||||
Get popular labels by node degree (tenant-scoped)
|
||||
Get popular labels by node degree (most connected entities)
|
||||
|
||||
Args:
|
||||
limit (int): Maximum number of labels to return (default: 300, max: 1000)
|
||||
|
||||
Returns:
|
||||
List[str]: List of popular labels sorted by degree (highest first) for the selected tenant/KB
|
||||
List[str]: List of popular labels sorted by degree (highest first)
|
||||
"""
|
||||
try:
|
||||
return await tenant_rag.chunk_entity_relation_graph.get_popular_labels(limit)
|
||||
return await rag.chunk_entity_relation_graph.get_popular_labels(limit)
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting popular labels: {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
|
@ -90,20 +91,19 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
limit: int = Query(
|
||||
50, description="Maximum number of search results to return", ge=1, le=100
|
||||
),
|
||||
tenant_rag: LightRAG = Depends(get_tenant_rag),
|
||||
):
|
||||
"""
|
||||
Search labels with fuzzy matching (tenant-scoped)
|
||||
Search labels with fuzzy matching
|
||||
|
||||
Args:
|
||||
q (str): Search query string
|
||||
limit (int): Maximum number of results to return (default: 50, max: 100)
|
||||
|
||||
Returns:
|
||||
List[str]: List of matching labels sorted by relevance for the selected tenant/KB
|
||||
List[str]: List of matching labels sorted by relevance
|
||||
"""
|
||||
try:
|
||||
return await tenant_rag.chunk_entity_relation_graph.search_labels(q, limit)
|
||||
return await rag.chunk_entity_relation_graph.search_labels(q, limit)
|
||||
except Exception as e:
|
||||
logger.error(f"Error searching labels with query '{q}': {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
|
@ -116,10 +116,9 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
label: str = Query(..., description="Label to get knowledge graph for"),
|
||||
max_depth: int = Query(3, description="Maximum depth of graph", ge=1),
|
||||
max_nodes: int = Query(1000, description="Maximum nodes to return", ge=1),
|
||||
tenant_rag: LightRAG = Depends(get_tenant_rag),
|
||||
):
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes (tenant-scoped).
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified label.
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Hops(path) to the staring node take precedence
|
||||
2. Followed by the degree of the nodes
|
||||
|
|
@ -130,7 +129,7 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
max_nodes: Maxiumu nodes to return
|
||||
|
||||
Returns:
|
||||
Dict[str, List[str]]: Knowledge graph for label from the selected tenant/KB
|
||||
Dict[str, List[str]]: Knowledge graph for label
|
||||
"""
|
||||
try:
|
||||
# Log the label parameter to check for leading spaces
|
||||
|
|
@ -138,7 +137,7 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
f"get_knowledge_graph called with label: '{label}' (length: {len(label)}, repr: {repr(label)})"
|
||||
)
|
||||
|
||||
return await tenant_rag.get_knowledge_graph(
|
||||
return await rag.get_knowledge_graph(
|
||||
node_label=label,
|
||||
max_depth=max_depth,
|
||||
max_nodes=max_nodes,
|
||||
|
|
@ -153,19 +152,18 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
@router.get("/graph/entity/exists", dependencies=[Depends(combined_auth)])
|
||||
async def check_entity_exists(
|
||||
name: str = Query(..., description="Entity name to check"),
|
||||
tenant_rag: LightRAG = Depends(get_tenant_rag),
|
||||
):
|
||||
"""
|
||||
Check if an entity with the given name exists in the knowledge graph (tenant-scoped)
|
||||
Check if an entity with the given name exists in the knowledge graph
|
||||
|
||||
Args:
|
||||
name (str): Name of the entity to check
|
||||
|
||||
Returns:
|
||||
Dict[str, bool]: Dictionary with 'exists' key indicating if entity exists in the selected tenant/KB
|
||||
Dict[str, bool]: Dictionary with 'exists' key indicating if entity exists
|
||||
"""
|
||||
try:
|
||||
exists = await tenant_rag.chunk_entity_relation_graph.has_node(name)
|
||||
exists = await rag.chunk_entity_relation_graph.has_node(name)
|
||||
return {"exists": exists}
|
||||
except Exception as e:
|
||||
logger.error(f"Error checking entity existence for '{name}': {str(e)}")
|
||||
|
|
@ -175,12 +173,9 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
)
|
||||
|
||||
@router.post("/graph/entity/edit", dependencies=[Depends(combined_auth)])
|
||||
async def update_entity(
|
||||
request: EntityUpdateRequest,
|
||||
tenant_rag: LightRAG = Depends(get_tenant_rag),
|
||||
):
|
||||
async def update_entity(request: EntityUpdateRequest):
|
||||
"""
|
||||
Update an entity's properties in the knowledge graph (tenant-scoped)
|
||||
Update an entity's properties in the knowledge graph
|
||||
|
||||
Args:
|
||||
request (EntityUpdateRequest): Request containing entity name, updated data, and rename flag
|
||||
|
|
@ -189,7 +184,7 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
Dict: Updated entity information
|
||||
"""
|
||||
try:
|
||||
result = await tenant_rag.aedit_entity(
|
||||
result = await rag.aedit_entity(
|
||||
entity_name=request.entity_name,
|
||||
updated_data=request.updated_data,
|
||||
allow_rename=request.allow_rename,
|
||||
|
|
@ -212,11 +207,8 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
)
|
||||
|
||||
@router.post("/graph/relation/edit", dependencies=[Depends(combined_auth)])
|
||||
async def update_relation(
|
||||
request: RelationUpdateRequest,
|
||||
tenant_rag: LightRAG = Depends(get_tenant_rag),
|
||||
):
|
||||
"""Update a relation's properties in the knowledge graph (tenant-scoped)
|
||||
async def update_relation(request: RelationUpdateRequest):
|
||||
"""Update a relation's properties in the knowledge graph
|
||||
|
||||
Args:
|
||||
request (RelationUpdateRequest): Request containing source ID, target ID and updated data
|
||||
|
|
@ -225,7 +217,7 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
Dict: Updated relation information
|
||||
"""
|
||||
try:
|
||||
result = await tenant_rag.aedit_relation(
|
||||
result = await rag.aedit_relation(
|
||||
source_entity=request.source_id,
|
||||
target_entity=request.target_id,
|
||||
updated_data=request.updated_data,
|
||||
|
|
@ -249,4 +241,169 @@ def create_graph_routes(rag, api_key: Optional[str] = None, rag_manager: Optiona
|
|||
status_code=500, detail=f"Error updating relation: {str(e)}"
|
||||
)
|
||||
|
||||
@router.post("/graph/entity/create", dependencies=[Depends(combined_auth)])
|
||||
async def create_entity(request: EntityCreateRequest):
|
||||
"""
|
||||
Create a new entity in the knowledge graph
|
||||
|
||||
Args:
|
||||
request (EntityCreateRequest): Request containing:
|
||||
- entity_name: Name of the entity
|
||||
- entity_data: Dictionary of entity properties (e.g., description, entity_type)
|
||||
|
||||
Returns:
|
||||
Dict: Created entity information
|
||||
|
||||
Example:
|
||||
{
|
||||
"entity_name": "Tesla",
|
||||
"entity_data": {
|
||||
"description": "Electric vehicle manufacturer",
|
||||
"entity_type": "ORGANIZATION"
|
||||
}
|
||||
}
|
||||
"""
|
||||
try:
|
||||
# Check if entity already exists
|
||||
exists = await rag.chunk_entity_relation_graph.has_node(request.entity_name)
|
||||
if exists:
|
||||
raise ValueError(f"Entity '{request.entity_name}' already exists")
|
||||
|
||||
# Prepare entity data
|
||||
entity_data = request.entity_data.copy()
|
||||
entity_data["entity_id"] = request.entity_name
|
||||
|
||||
# Create the entity
|
||||
await rag.chunk_entity_relation_graph.upsert_node(
|
||||
request.entity_name, entity_data
|
||||
)
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"Entity '{request.entity_name}' created successfully",
|
||||
"data": entity_data,
|
||||
}
|
||||
except ValueError as ve:
|
||||
logger.error(f"Validation error creating entity '{request.entity_name}': {str(ve)}")
|
||||
raise HTTPException(status_code=400, detail=str(ve))
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating entity '{request.entity_name}': {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
raise HTTPException(
|
||||
status_code=500, detail=f"Error creating entity: {str(e)}"
|
||||
)
|
||||
|
||||
@router.post("/graph/relation/create", dependencies=[Depends(combined_auth)])
|
||||
async def create_relation(request: RelationCreateRequest):
|
||||
"""
|
||||
Create a new relationship between two entities in the knowledge graph
|
||||
|
||||
Args:
|
||||
request (RelationCreateRequest): Request containing:
|
||||
- source_entity: Source entity name
|
||||
- target_entity: Target entity name
|
||||
- relation_data: Dictionary of relation properties (e.g., description, keywords, weight)
|
||||
|
||||
Returns:
|
||||
Dict: Created relation information
|
||||
|
||||
Example:
|
||||
{
|
||||
"source_entity": "Elon Musk",
|
||||
"target_entity": "Tesla",
|
||||
"relation_data": {
|
||||
"description": "Elon Musk is the CEO of Tesla",
|
||||
"keywords": "CEO, founder",
|
||||
"weight": 1.0
|
||||
}
|
||||
}
|
||||
"""
|
||||
try:
|
||||
# Check if both entities exist
|
||||
source_exists = await rag.chunk_entity_relation_graph.has_node(
|
||||
request.source_entity
|
||||
)
|
||||
target_exists = await rag.chunk_entity_relation_graph.has_node(
|
||||
request.target_entity
|
||||
)
|
||||
|
||||
if not source_exists:
|
||||
raise ValueError(f"Source entity '{request.source_entity}' does not exist")
|
||||
if not target_exists:
|
||||
raise ValueError(f"Target entity '{request.target_entity}' does not exist")
|
||||
|
||||
# Create the relationship
|
||||
await rag.chunk_entity_relation_graph.upsert_edge(
|
||||
request.source_entity, request.target_entity, request.relation_data
|
||||
)
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"Relation created successfully between '{request.source_entity}' and '{request.target_entity}'",
|
||||
"data": {
|
||||
"source": request.source_entity,
|
||||
"target": request.target_entity,
|
||||
**request.relation_data,
|
||||
},
|
||||
}
|
||||
except ValueError as ve:
|
||||
logger.error(
|
||||
f"Validation error creating relation between '{request.source_entity}' and '{request.target_entity}': {str(ve)}"
|
||||
)
|
||||
raise HTTPException(status_code=400, detail=str(ve))
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error creating relation between '{request.source_entity}' and '{request.target_entity}': {str(e)}"
|
||||
)
|
||||
logger.error(traceback.format_exc())
|
||||
raise HTTPException(
|
||||
status_code=500, detail=f"Error creating relation: {str(e)}"
|
||||
)
|
||||
|
||||
@router.post("/graph/entities/merge", dependencies=[Depends(combined_auth)])
|
||||
async def merge_entities(request: EntityMergeRequest):
|
||||
"""
|
||||
Merge multiple entities into a single entity, preserving all relationships.
|
||||
|
||||
This endpoint is useful for consolidating duplicate or misspelled entities.
|
||||
All relationships from the source entities will be transferred to the target entity.
|
||||
|
||||
Args:
|
||||
request (EntityMergeRequest): Request containing:
|
||||
- entities_to_change: List of entity names to be removed
|
||||
- entity_to_change_into: Name of the target entity to merge into
|
||||
|
||||
Returns:
|
||||
Dict: Result of the merge operation with merged entity information
|
||||
|
||||
Example:
|
||||
{
|
||||
"entities_to_change": ["Elon Msk", "Ellon Musk"],
|
||||
"entity_to_change_into": "Elon Musk"
|
||||
}
|
||||
"""
|
||||
try:
|
||||
result = await rag.amerge_entities(
|
||||
source_entities=request.entities_to_change,
|
||||
target_entity=request.entity_to_change_into,
|
||||
)
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"Successfully merged {len(request.entities_to_change)} entities into '{request.entity_to_change_into}'",
|
||||
"data": result,
|
||||
}
|
||||
except ValueError as ve:
|
||||
logger.error(
|
||||
f"Validation error merging entities {request.entities_to_change} into '{request.entity_to_change_into}': {str(ve)}"
|
||||
)
|
||||
raise HTTPException(status_code=400, detail=str(ve))
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error merging entities {request.entities_to_change} into '{request.entity_to_change_into}': {str(e)}"
|
||||
)
|
||||
logger.error(traceback.format_exc())
|
||||
raise HTTPException(
|
||||
status_code=500, detail=f"Error merging entities: {str(e)}"
|
||||
)
|
||||
|
||||
return router
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue