diff --git a/lightrag/api/lightrag_server.py b/lightrag/api/lightrag_server.py index a8a14c66..16e59d21 100644 --- a/lightrag/api/lightrag_server.py +++ b/lightrag/api/lightrag_server.py @@ -780,6 +780,7 @@ def create_app(args): ) return await actual_func( texts, + model=model, embedding_dim=embedding_dim, base_url=host, api_key=api_key, diff --git a/lightrag/llm/jina.py b/lightrag/llm/jina.py index f61faadd..41251f4a 100644 --- a/lightrag/llm/jina.py +++ b/lightrag/llm/jina.py @@ -69,6 +69,7 @@ async def fetch_data(url, headers, data): ) async def jina_embed( texts: list[str], + model: str = "jina-embeddings-v4", embedding_dim: int = 2048, late_chunking: bool = False, base_url: str = None, @@ -78,6 +79,8 @@ async def jina_embed( Args: texts: List of texts to embed. + model: The Jina embedding model to use (default: jina-embeddings-v4). + Supported models: jina-embeddings-v3, jina-embeddings-v4, etc. embedding_dim: The embedding dimensions (default: 2048 for jina-embeddings-v4). **IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper. Do NOT manually pass this parameter when calling the function directly. @@ -107,7 +110,7 @@ async def jina_embed( "Authorization": f"Bearer {os.environ['JINA_API_KEY']}", } data = { - "model": "jina-embeddings-v4", + "model": model, "task": "text-matching", "dimensions": embedding_dim, "embedding_type": "base64",