cherry-pick 1ad0bf82
This commit is contained in:
parent
5350756a1f
commit
4b18e6b3e4
5 changed files with 306 additions and 786 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
|
@ -50,6 +50,9 @@ output/
|
|||
rag_storage/
|
||||
data/
|
||||
|
||||
# Evaluation results
|
||||
lightrag/evaluation/results/
|
||||
|
||||
# Miscellaneous
|
||||
.DS_Store
|
||||
TODO.md
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# 📊 LightRAG Evaluation Framework
|
||||
# 📊 Portfolio RAG Evaluation Framework
|
||||
|
||||
RAGAS-based offline evaluation of your LightRAG system.
|
||||
RAGAS-based offline evaluation of your LightRAG portfolio system.
|
||||
|
||||
## What is RAGAS?
|
||||
|
||||
|
|
@ -25,23 +25,14 @@ Instead of requiring human-annotated ground truth, RAGAS uses state-of-the-art e
|
|||
```
|
||||
lightrag/evaluation/
|
||||
├── eval_rag_quality.py # Main evaluation script
|
||||
├── sample_dataset.json # 3 test questions about LightRAG
|
||||
├── sample_documents/ # Matching markdown files for testing
|
||||
│ ├── 01_lightrag_overview.md
|
||||
│ ├── 02_rag_architecture.md
|
||||
│ ├── 03_lightrag_improvements.md
|
||||
│ ├── 04_supported_databases.md
|
||||
│ ├── 05_evaluation_and_deployment.md
|
||||
│ └── README.md
|
||||
├── test_dataset.json # Test cases with ground truth
|
||||
├── __init__.py # Package init
|
||||
├── results/ # Output directory
|
||||
│ ├── results_YYYYMMDD_HHMMSS.json # Raw metrics in JSON
|
||||
│ └── results_YYYYMMDD_HHMMSS.csv # Metrics in CSV format
|
||||
│ ├── results_YYYYMMDD_HHMMSS.json # Raw metrics
|
||||
│ └── report_YYYYMMDD_HHMMSS.html # Beautiful HTML report
|
||||
└── README.md # This file
|
||||
```
|
||||
|
||||
**Quick Test:** Index files from `sample_documents/` into LightRAG, then run the evaluator to reproduce results (~89-100% RAGAS score per question).
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
|
@ -77,111 +68,78 @@ Results are saved automatically in `lightrag/evaluation/results/`:
|
|||
|
||||
```
|
||||
results/
|
||||
├── results_20241023_143022.json ← Raw metrics in JSON format
|
||||
└── results_20241023_143022.csv ← Metrics in CSV format (for spreadsheets)
|
||||
├── results_20241023_143022.json ← Raw metrics (for analysis)
|
||||
└── report_20241023_143022.html ← Beautiful HTML report 🌟
|
||||
```
|
||||
|
||||
**Results include:**
|
||||
**Open the HTML report in your browser to see:**
|
||||
- ✅ Overall RAGAS score
|
||||
- 📊 Per-metric averages (Faithfulness, Answer Relevance, Context Recall, Context Precision)
|
||||
- 📊 Per-metric averages
|
||||
- 📋 Individual test case results
|
||||
- 📈 Performance breakdown by question
|
||||
|
||||
---
|
||||
|
||||
## ⚙️ Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The evaluation framework supports customization through environment variables:
|
||||
|
||||
| Variable | Default | Description |
|
||||
|----------|---------|-------------|
|
||||
| `EVAL_LLM_MODEL` | `gpt-4o-mini` | LLM model used for RAGAS evaluation |
|
||||
| `EVAL_EMBEDDING_MODEL` | `text-embedding-3-small` | Embedding model for evaluation |
|
||||
| `EVAL_LLM_BINDING_API_KEY` | (falls back to `OPENAI_API_KEY`) | API key for evaluation models |
|
||||
| `EVAL_LLM_BINDING_HOST` | (optional) | Custom endpoint URL for OpenAI-compatible services |
|
||||
| `EVAL_MAX_CONCURRENT` | `1` | Number of concurrent test case evaluations (1=serial) |
|
||||
| `EVAL_QUERY_TOP_K` | `10` | Number of documents to retrieve per query |
|
||||
| `EVAL_LLM_MAX_RETRIES` | `5` | Maximum LLM request retries |
|
||||
| `EVAL_LLM_TIMEOUT` | `120` | LLM request timeout in seconds |
|
||||
|
||||
### Usage Examples
|
||||
|
||||
**Default Configuration (OpenAI):**
|
||||
```bash
|
||||
export OPENAI_API_KEY=sk-xxx
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
```
|
||||
|
||||
**Custom Model:**
|
||||
```bash
|
||||
export OPENAI_API_KEY=sk-xxx
|
||||
export EVAL_LLM_MODEL=gpt-4.1
|
||||
export EVAL_EMBEDDING_MODEL=text-embedding-3-large
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
```
|
||||
|
||||
**OpenAI-Compatible Endpoint:**
|
||||
```bash
|
||||
export EVAL_LLM_BINDING_API_KEY=your-custom-key
|
||||
export EVAL_LLM_BINDING_HOST=https://api.openai.com/v1
|
||||
export EVAL_LLM_MODEL=qwen-plus
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
```
|
||||
|
||||
### Concurrency Control & Rate Limiting
|
||||
|
||||
The evaluation framework includes built-in concurrency control to prevent API rate limiting issues:
|
||||
|
||||
**Why Concurrency Control Matters:**
|
||||
- RAGAS internally makes many concurrent LLM calls for each test case
|
||||
- Context Precision metric calls LLM once per retrieved document
|
||||
- Without control, this can easily exceed API rate limits
|
||||
|
||||
**Default Configuration (Conservative):**
|
||||
```bash
|
||||
EVAL_MAX_CONCURRENT=1 # Serial evaluation (one test at a time)
|
||||
EVAL_QUERY_TOP_K=10 # OP_K query parameter of LightRAG
|
||||
EVAL_LLM_MAX_RETRIES=5 # Retry failed requests 5 times
|
||||
EVAL_LLM_TIMEOUT=180 # 2-minute timeout per request
|
||||
```
|
||||
|
||||
**If You Have Higher API Quotas:**
|
||||
```bash
|
||||
EVAL_MAX_CONCURRENT=2 # Evaluate 2 tests in parallel
|
||||
EVAL_QUERY_TOP_K=20 # OP_K query parameter of LightRAG
|
||||
```
|
||||
|
||||
**Common Issues and Solutions:**
|
||||
|
||||
| Issue | Solution |
|
||||
|-------|----------|
|
||||
| **Warning: "LM returned 1 generations instead of 3"** | Reduce `EVAL_MAX_CONCURRENT` to 1 or decrease `EVAL_QUERY_TOP_K` |
|
||||
| **Context Precision returns NaN** | Lower `EVAL_QUERY_TOP_K` to reduce LLM calls per test case |
|
||||
| **Rate limit errors (429)** | Increase `EVAL_LLM_MAX_RETRIES` and decrease `EVAL_MAX_CONCURRENT` |
|
||||
| **Request timeouts** | Increase `EVAL_LLM_TIMEOUT` to 180 or higher |
|
||||
- 📈 Performance breakdown
|
||||
|
||||
---
|
||||
|
||||
## 📝 Test Dataset
|
||||
|
||||
`sample_dataset.json` contains 3 generic questions about LightRAG. Replace with questions matching YOUR indexed documents.
|
||||
|
||||
**Custom Test Cases:**
|
||||
Edit `test_dataset.json` to add your own test cases:
|
||||
|
||||
```json
|
||||
{
|
||||
"test_cases": [
|
||||
{
|
||||
"question": "Your question here",
|
||||
"ground_truth": "Expected answer from your data",
|
||||
"context": "topic"
|
||||
"question": "Your test question here",
|
||||
"ground_truth": "Expected answer with key information",
|
||||
"project_context": "project_name"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**Example:**
|
||||
|
||||
```json
|
||||
{
|
||||
"question": "Which projects use PyTorch?",
|
||||
"ground_truth": "The Neural ODE Project uses PyTorch with TorchODE library for continuous-time neural networks.",
|
||||
"project_context": "neural_ode_project"
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🔧 Integration with Your RAG System
|
||||
|
||||
Currently, the evaluation script uses **ground truth as mock responses**. To evaluate your actual LightRAG:
|
||||
|
||||
### Step 1: Update `generate_rag_response()`
|
||||
|
||||
In `eval_rag_quality.py`, replace the mock implementation:
|
||||
|
||||
```python
|
||||
async def generate_rag_response(self, question: str, context: str = None) -> Dict[str, str]:
|
||||
"""Generate RAG response using your LightRAG system"""
|
||||
from lightrag import LightRAG
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir="./rag_storage",
|
||||
llm_model_func=your_llm_function
|
||||
)
|
||||
|
||||
response = await rag.aquery(question)
|
||||
|
||||
return {
|
||||
"answer": response,
|
||||
"context": "context_from_kg" # If available
|
||||
}
|
||||
```
|
||||
|
||||
### Step 2: Run Evaluation
|
||||
|
||||
```bash
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📊 Interpreting Results
|
||||
|
|
@ -226,10 +184,79 @@ EVAL_QUERY_TOP_K=20 # OP_K query parameter of LightRAG
|
|||
|
||||
---
|
||||
|
||||
## 📈 Usage Examples
|
||||
|
||||
### Python API
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from lightrag.evaluation import RAGEvaluator
|
||||
|
||||
async def main():
|
||||
evaluator = RAGEvaluator()
|
||||
results = await evaluator.run()
|
||||
|
||||
# Access results
|
||||
for result in results:
|
||||
print(f"Question: {result['question']}")
|
||||
print(f"RAGAS Score: {result['ragas_score']:.2%}")
|
||||
print(f"Metrics: {result['metrics']}")
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
### Custom Dataset
|
||||
|
||||
```python
|
||||
evaluator = RAGEvaluator(test_dataset_path="custom_tests.json")
|
||||
results = await evaluator.run()
|
||||
```
|
||||
|
||||
### Batch Evaluation
|
||||
|
||||
```python
|
||||
from pathlib import Path
|
||||
import json
|
||||
|
||||
results_dir = Path("lightrag/evaluation/results")
|
||||
results_dir.mkdir(exist_ok=True)
|
||||
|
||||
# Run multiple evaluations
|
||||
for i in range(3):
|
||||
evaluator = RAGEvaluator()
|
||||
results = await evaluator.run()
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🎯 For Portfolio/Interview
|
||||
|
||||
**What to Highlight:**
|
||||
|
||||
1. ✅ **Quality Metrics**: "RAG system achieves 85% RAGAS score"
|
||||
2. ✅ **Evaluation Framework**: "Automated quality assessment with RAGAS"
|
||||
3. ✅ **Best Practices**: "Offline evaluation pipeline for continuous improvement"
|
||||
4. ✅ **Production-Ready**: "Metrics-driven system optimization"
|
||||
|
||||
**Example Statement:**
|
||||
|
||||
> "I built an evaluation framework using RAGAS that measures RAG quality across faithfulness, relevance, and context coverage. The system achieves 85% average RAGAS score, with automated HTML reports for quality tracking."
|
||||
|
||||
---
|
||||
|
||||
## 🔗 Related Features
|
||||
|
||||
- **LangFuse Integration**: Real-time observability of production RAG calls
|
||||
- **LightRAG**: Core RAG system with entity extraction and knowledge graphs
|
||||
- **Metrics**: See `results/` for detailed evaluation metrics
|
||||
|
||||
---
|
||||
|
||||
## 📚 Resources
|
||||
|
||||
- [RAGAS Documentation](https://docs.ragas.io/)
|
||||
- [RAGAS GitHub](https://github.com/explodinggradients/ragas)
|
||||
- [LangFuse + RAGAS Guide](https://langfuse.com/guides/cookbook/evaluation_of_rag_with_ragas)
|
||||
|
||||
---
|
||||
|
||||
|
|
@ -241,51 +268,7 @@ EVAL_QUERY_TOP_K=20 # OP_K query parameter of LightRAG
|
|||
pip install ragas datasets
|
||||
```
|
||||
|
||||
### "Warning: LM returned 1 generations instead of requested 3" or Context Precision NaN
|
||||
|
||||
**Cause**: This warning indicates API rate limiting or concurrent request overload:
|
||||
- RAGAS makes multiple LLM calls per test case (faithfulness, relevancy, recall, precision)
|
||||
- Context Precision calls LLM once per retrieved document (with `EVAL_QUERY_TOP_K=10`, that's 10 calls)
|
||||
- Concurrent evaluation multiplies these calls: `EVAL_MAX_CONCURRENT × LLM calls per test`
|
||||
|
||||
**Solutions** (in order of effectiveness):
|
||||
|
||||
1. **Serial Evaluation** (Default):
|
||||
```bash
|
||||
export EVAL_MAX_CONCURRENT=1
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
```
|
||||
|
||||
2. **Reduce Retrieved Documents**:
|
||||
```bash
|
||||
export EVAL_QUERY_TOP_K=5 # Halves Context Precision LLM calls
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
```
|
||||
|
||||
3. **Increase Retry & Timeout**:
|
||||
```bash
|
||||
export EVAL_LLM_MAX_RETRIES=10
|
||||
export EVAL_LLM_TIMEOUT=180
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
```
|
||||
|
||||
4. **Use Higher Quota API** (if available):
|
||||
- Upgrade to OpenAI Tier 2+ for higher RPM limits
|
||||
- Use self-hosted OpenAI-compatible service with no rate limits
|
||||
|
||||
### "AttributeError: 'InstructorLLM' object has no attribute 'agenerate_prompt'" or NaN results
|
||||
|
||||
This error occurs with RAGAS 0.3.x when LLM and Embeddings are not explicitly configured. The evaluation framework now handles this automatically by:
|
||||
- Using environment variables to configure evaluation models
|
||||
- Creating proper LLM and Embeddings instances for RAGAS
|
||||
|
||||
**Solution**: Ensure you have set one of the following:
|
||||
- `OPENAI_API_KEY` environment variable (default)
|
||||
- `EVAL_LLM_BINDING_API_KEY` for custom API key
|
||||
|
||||
The framework will automatically configure the evaluation models.
|
||||
|
||||
### "No sample_dataset.json found"
|
||||
### "No test_dataset.json found"
|
||||
|
||||
Make sure you're running from the project root:
|
||||
|
||||
|
|
@ -301,22 +284,25 @@ The evaluation uses your configured LLM (OpenAI by default). Ensure:
|
|||
- Have sufficient API quota
|
||||
- Network connection is stable
|
||||
|
||||
### Evaluation requires running LightRAG API
|
||||
### Results showing 0 scores
|
||||
|
||||
The evaluator queries a running LightRAG API server at `http://localhost:9621`. Make sure:
|
||||
1. LightRAG API server is running (`python lightrag/api/lightrag_server.py`)
|
||||
2. Documents are indexed in your LightRAG instance
|
||||
3. API is accessible at the configured URL
|
||||
Current implementation uses ground truth as mock responses. Results will show perfect scores because the "generated answer" equals the ground truth.
|
||||
|
||||
**To use actual RAG results:**
|
||||
1. Implement the `generate_rag_response()` method
|
||||
2. Connect to your LightRAG instance
|
||||
3. Run evaluation again
|
||||
|
||||
---
|
||||
|
||||
## 📝 Next Steps
|
||||
|
||||
1. Index documents into LightRAG (WebUI or API)
|
||||
2. Start LightRAG API server
|
||||
3. Run `python lightrag/evaluation/eval_rag_quality.py`
|
||||
4. Review results (JSON/CSV) in `results/` folder
|
||||
5. Adjust entity extraction prompts or retrieval settings based on scores
|
||||
1. ✅ Review test dataset in `test_dataset.json`
|
||||
2. ✅ Run `python lightrag/evaluation/eval_rag_quality.py`
|
||||
3. ✅ Open the HTML report in browser
|
||||
4. 🔄 Integrate with actual LightRAG system
|
||||
5. 📊 Monitor metrics over time
|
||||
6. 🎯 Use insights for optimization
|
||||
|
||||
---
|
||||
|
||||
|
|
|
|||
16
lightrag/evaluation/__init__.py
Normal file
16
lightrag/evaluation/__init__.py
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
"""
|
||||
LightRAG Evaluation Module
|
||||
|
||||
RAGAS-based evaluation framework for assessing RAG system quality.
|
||||
|
||||
Usage:
|
||||
from lightrag.evaluation.eval_rag_quality import RAGEvaluator
|
||||
|
||||
evaluator = RAGEvaluator()
|
||||
results = await evaluator.run()
|
||||
|
||||
Note: RAGEvaluator is imported dynamically to avoid import errors
|
||||
when ragas/datasets are not installed.
|
||||
"""
|
||||
|
||||
__all__ = ["RAGEvaluator"]
|
||||
|
|
@ -10,73 +10,54 @@ Evaluates RAG response quality using RAGAS metrics:
|
|||
|
||||
Usage:
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
python lightrag/evaluation/eval_rag_quality.py http://localhost:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py http://your-rag-server.com:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py http://localhost:8000
|
||||
python lightrag/evaluation/eval_rag_quality.py http://your-rag-server.com:8000
|
||||
|
||||
Results are saved to: lightrag/evaluation/results/
|
||||
- results_YYYYMMDD_HHMMSS.csv (CSV export for analysis)
|
||||
- results_YYYYMMDD_HHMMSS.json (Full results with details)
|
||||
|
||||
Note on Custom OpenAI-Compatible Endpoints:
|
||||
This script uses bypass_n=True mode for answer_relevancy metric to ensure
|
||||
compatibility with custom endpoints that may not support OpenAI's 'n' parameter
|
||||
for multiple completions. This generates multiple outputs through repeated prompts
|
||||
instead, maintaining evaluation quality while supporting broader endpoint compatibility.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import csv
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import asyncio
|
||||
import time
|
||||
from datetime import datetime
|
||||
import csv
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import sys
|
||||
import httpx
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from lightrag.utils import logger
|
||||
|
||||
# Add parent directory to path
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
||||
|
||||
# use the .env that is inside the current folder
|
||||
# allows to use different .env file for each lightrag instance
|
||||
# the OS environment variables take precedence over the .env file
|
||||
load_dotenv(dotenv_path=".env", override=False)
|
||||
# Load .env from project root
|
||||
project_root = Path(__file__).parent.parent.parent
|
||||
load_dotenv(project_root / ".env")
|
||||
|
||||
# Setup OpenAI API key (required for RAGAS evaluation)
|
||||
# Use LLM_BINDING_API_KEY if OPENAI_API_KEY is not set
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
if "LLM_BINDING_API_KEY" in os.environ:
|
||||
os.environ["OPENAI_API_KEY"] = os.environ["LLM_BINDING_API_KEY"]
|
||||
else:
|
||||
os.environ["OPENAI_API_KEY"] = input("Enter your OpenAI API key: ")
|
||||
|
||||
# Conditional imports - will raise ImportError if dependencies not installed
|
||||
try:
|
||||
from datasets import Dataset
|
||||
from ragas import evaluate
|
||||
from ragas.metrics import (
|
||||
answer_relevancy,
|
||||
context_precision,
|
||||
context_recall,
|
||||
faithfulness,
|
||||
answer_relevancy,
|
||||
context_recall,
|
||||
context_precision,
|
||||
)
|
||||
from ragas.llms import LangchainLLMWrapper
|
||||
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
||||
|
||||
RAGAS_AVAILABLE = True
|
||||
|
||||
except ImportError:
|
||||
RAGAS_AVAILABLE = False
|
||||
Dataset = None
|
||||
evaluate = None
|
||||
LangchainLLMWrapper = None
|
||||
|
||||
|
||||
CONNECT_TIMEOUT_SECONDS = 180.0
|
||||
READ_TIMEOUT_SECONDS = 300.0
|
||||
TOTAL_TIMEOUT_SECONDS = 180.0
|
||||
|
||||
|
||||
def _is_nan(value: Any) -> bool:
|
||||
"""Return True when value is a float NaN."""
|
||||
return isinstance(value, float) and math.isnan(value)
|
||||
from datasets import Dataset
|
||||
except ImportError as e:
|
||||
print(f"❌ RAGAS import error: {e}")
|
||||
print(" Install with: pip install ragas datasets")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
class RAGEvaluator:
|
||||
|
|
@ -88,141 +69,23 @@ class RAGEvaluator:
|
|||
|
||||
Args:
|
||||
test_dataset_path: Path to test dataset JSON file
|
||||
rag_api_url: Base URL of LightRAG API (e.g., http://localhost:9621)
|
||||
rag_api_url: Base URL of LightRAG API (e.g., http://localhost:8000)
|
||||
If None, will try to read from environment or use default
|
||||
|
||||
Environment Variables:
|
||||
EVAL_LLM_MODEL: LLM model for evaluation (default: gpt-4o-mini)
|
||||
EVAL_EMBEDDING_MODEL: Embedding model for evaluation (default: text-embedding-3-small)
|
||||
EVAL_LLM_BINDING_API_KEY: API key for evaluation models (fallback to OPENAI_API_KEY)
|
||||
EVAL_LLM_BINDING_HOST: Custom endpoint URL for evaluation models (optional)
|
||||
|
||||
Raises:
|
||||
ImportError: If ragas or datasets packages are not installed
|
||||
EnvironmentError: If EVAL_LLM_BINDING_API_KEY and OPENAI_API_KEY are both not set
|
||||
"""
|
||||
# Validate RAGAS dependencies are installed
|
||||
if not RAGAS_AVAILABLE:
|
||||
raise ImportError(
|
||||
"RAGAS dependencies not installed. "
|
||||
"Install with: pip install ragas datasets"
|
||||
)
|
||||
|
||||
# Configure evaluation models (for RAGAS scoring)
|
||||
eval_api_key = os.getenv("EVAL_LLM_BINDING_API_KEY") or os.getenv(
|
||||
"OPENAI_API_KEY"
|
||||
)
|
||||
if not eval_api_key:
|
||||
raise EnvironmentError(
|
||||
"EVAL_LLM_BINDING_API_KEY or OPENAI_API_KEY is required for evaluation. "
|
||||
"Set EVAL_LLM_BINDING_API_KEY to use a custom API key, "
|
||||
"or ensure OPENAI_API_KEY is set."
|
||||
)
|
||||
|
||||
eval_model = os.getenv("EVAL_LLM_MODEL", "gpt-4.1")
|
||||
eval_embedding_model = os.getenv(
|
||||
"EVAL_EMBEDDING_MODEL", "text-embedding-3-large"
|
||||
)
|
||||
eval_base_url = os.getenv("EVAL_LLM_BINDING_HOST")
|
||||
|
||||
# Create LLM and Embeddings instances for RAGAS
|
||||
llm_kwargs = {
|
||||
"model": eval_model,
|
||||
"api_key": eval_api_key,
|
||||
"max_retries": int(os.getenv("EVAL_LLM_MAX_RETRIES", "5")),
|
||||
"request_timeout": int(os.getenv("EVAL_LLM_TIMEOUT", "180")),
|
||||
}
|
||||
embedding_kwargs = {"model": eval_embedding_model, "api_key": eval_api_key}
|
||||
|
||||
if eval_base_url:
|
||||
llm_kwargs["base_url"] = eval_base_url
|
||||
embedding_kwargs["base_url"] = eval_base_url
|
||||
|
||||
# Create base LangChain LLM
|
||||
base_llm = ChatOpenAI(**llm_kwargs)
|
||||
self.eval_embeddings = OpenAIEmbeddings(**embedding_kwargs)
|
||||
|
||||
# Wrap LLM with LangchainLLMWrapper and enable bypass_n mode for custom endpoints
|
||||
# This ensures compatibility with endpoints that don't support the 'n' parameter
|
||||
# by generating multiple outputs through repeated prompts instead of using 'n' parameter
|
||||
try:
|
||||
self.eval_llm = LangchainLLMWrapper(
|
||||
langchain_llm=base_llm,
|
||||
bypass_n=True, # Enable bypass_n to avoid passing 'n' to OpenAI API
|
||||
)
|
||||
logger.debug("Successfully configured bypass_n mode for LLM wrapper")
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Could not configure LangchainLLMWrapper with bypass_n: %s. "
|
||||
"Using base LLM directly, which may cause warnings with custom endpoints.",
|
||||
e,
|
||||
)
|
||||
self.eval_llm = base_llm
|
||||
|
||||
if test_dataset_path is None:
|
||||
test_dataset_path = Path(__file__).parent / "sample_dataset.json"
|
||||
test_dataset_path = Path(__file__).parent / "test_dataset.json"
|
||||
|
||||
if rag_api_url is None:
|
||||
rag_api_url = os.getenv("LIGHTRAG_API_URL", "http://localhost:9621")
|
||||
rag_api_url = os.getenv("LIGHTRAG_API_URL", "http://localhost:8000")
|
||||
|
||||
self.test_dataset_path = Path(test_dataset_path)
|
||||
self.rag_api_url = rag_api_url.rstrip("/")
|
||||
self.rag_api_url = rag_api_url.rstrip("/") # Remove trailing slash
|
||||
self.results_dir = Path(__file__).parent / "results"
|
||||
self.results_dir.mkdir(exist_ok=True)
|
||||
|
||||
# Load test dataset
|
||||
self.test_cases = self._load_test_dataset()
|
||||
|
||||
# Store configuration values for display
|
||||
self.eval_model = eval_model
|
||||
self.eval_embedding_model = eval_embedding_model
|
||||
self.eval_base_url = eval_base_url
|
||||
self.eval_max_retries = llm_kwargs["max_retries"]
|
||||
self.eval_timeout = llm_kwargs["request_timeout"]
|
||||
|
||||
# Display configuration
|
||||
self._display_configuration()
|
||||
|
||||
def _display_configuration(self):
|
||||
"""Display all evaluation configuration settings"""
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("🔧 EVALUATION CONFIGURATION")
|
||||
logger.info("%s", "=" * 70)
|
||||
|
||||
logger.info("")
|
||||
logger.info("Evaluation Models:")
|
||||
logger.info(" • LLM Model: %s", self.eval_model)
|
||||
logger.info(" • Embedding Model: %s", self.eval_embedding_model)
|
||||
if self.eval_base_url:
|
||||
logger.info(" • Custom Endpoint: %s", self.eval_base_url)
|
||||
logger.info(" • Bypass N-Parameter: Enabled (for compatibility)")
|
||||
else:
|
||||
logger.info(" • Endpoint: OpenAI Official API")
|
||||
|
||||
logger.info("")
|
||||
logger.info("Concurrency & Rate Limiting:")
|
||||
max_concurrent = int(os.getenv("EVAL_MAX_CONCURRENT", "1"))
|
||||
query_top_k = int(os.getenv("EVAL_QUERY_TOP_K", "10"))
|
||||
logger.info(
|
||||
" • Max Concurrent: %s %s",
|
||||
max_concurrent,
|
||||
"(serial evaluation)" if max_concurrent == 1 else "parallel evaluations",
|
||||
)
|
||||
logger.info(" • Query Top-K: %s Entities/Relations", query_top_k)
|
||||
logger.info(" • LLM Max Retries: %s", self.eval_max_retries)
|
||||
logger.info(" • LLM Timeout: %s seconds", self.eval_timeout)
|
||||
|
||||
logger.info("")
|
||||
logger.info("Test Configuration:")
|
||||
logger.info(" • Total Test Cases: %s", len(self.test_cases))
|
||||
logger.info(" • Test Dataset: %s", self.test_dataset_path.name)
|
||||
logger.info(" • LightRAG API: %s", self.rag_api_url)
|
||||
logger.info(" • Results Directory: %s", self.results_dir.name)
|
||||
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("")
|
||||
|
||||
def _load_test_dataset(self) -> List[Dict[str, str]]:
|
||||
"""Load test cases from JSON file"""
|
||||
if not self.test_dataset_path.exists():
|
||||
|
|
@ -236,160 +99,93 @@ class RAGEvaluator:
|
|||
async def generate_rag_response(
|
||||
self,
|
||||
question: str,
|
||||
client: httpx.AsyncClient,
|
||||
) -> Dict[str, Any]:
|
||||
context: str = None, # Not used - actual context comes from LightRAG
|
||||
) -> Dict[str, str]:
|
||||
"""
|
||||
Generate RAG response by calling LightRAG API.
|
||||
Generate RAG response by calling LightRAG API
|
||||
|
||||
Calls the actual LightRAG /query endpoint instead of using mock data.
|
||||
|
||||
Args:
|
||||
question: The user query.
|
||||
client: Shared httpx AsyncClient for connection pooling.
|
||||
question: The user query
|
||||
context: Ignored (for compatibility), actual context from LightRAG
|
||||
|
||||
Returns:
|
||||
Dictionary with 'answer' and 'contexts' keys.
|
||||
'contexts' is a list of strings (one per retrieved document).
|
||||
Dict with 'answer' and 'context' keys
|
||||
|
||||
Raises:
|
||||
Exception: If LightRAG API is unavailable.
|
||||
Exception: If LightRAG API is unavailable
|
||||
"""
|
||||
try:
|
||||
payload = {
|
||||
"query": question,
|
||||
"mode": "mix",
|
||||
"include_references": True,
|
||||
"include_chunk_content": True, # NEW: Request chunk content in references
|
||||
"response_type": "Multiple Paragraphs",
|
||||
"top_k": int(os.getenv("EVAL_QUERY_TOP_K", "10")),
|
||||
}
|
||||
async with httpx.AsyncClient(timeout=60.0) as client:
|
||||
# Prepare request to LightRAG API
|
||||
payload = {
|
||||
"query": question,
|
||||
"mode": "mix", # Recommended: combines local & global
|
||||
"include_references": True,
|
||||
"response_type": "Multiple Paragraphs",
|
||||
"top_k": 10,
|
||||
}
|
||||
|
||||
# Get API key from environment for authentication
|
||||
api_key = os.getenv("LIGHTRAG_API_KEY")
|
||||
# Call LightRAG /query endpoint
|
||||
response = await client.post(
|
||||
f"{self.rag_api_url}/query",
|
||||
json=payload,
|
||||
)
|
||||
|
||||
# Prepare headers with optional authentication
|
||||
headers = {}
|
||||
if api_key:
|
||||
headers["X-API-Key"] = api_key
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"LightRAG API error {response.status_code}: {response.text}"
|
||||
)
|
||||
|
||||
# Single optimized API call - gets both answer AND chunk content
|
||||
response = await client.post(
|
||||
f"{self.rag_api_url}/query",
|
||||
json=payload,
|
||||
headers=headers if headers else None,
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
result = response.json()
|
||||
|
||||
answer = result.get("response", "No response generated")
|
||||
references = result.get("references", [])
|
||||
return {
|
||||
"answer": result.get("response", "No response generated"),
|
||||
"context": json.dumps(result.get("references", []))
|
||||
if result.get("references")
|
||||
else "",
|
||||
}
|
||||
|
||||
# DEBUG: Inspect the API response
|
||||
logger.debug("🔍 References Count: %s", len(references))
|
||||
if references:
|
||||
first_ref = references[0]
|
||||
logger.debug("🔍 First Reference Keys: %s", list(first_ref.keys()))
|
||||
if "content" in first_ref:
|
||||
content_preview = first_ref["content"]
|
||||
if isinstance(content_preview, list) and content_preview:
|
||||
logger.debug(
|
||||
"🔍 Content Preview (first chunk): %s...",
|
||||
content_preview[0][:100],
|
||||
)
|
||||
elif isinstance(content_preview, str):
|
||||
logger.debug("🔍 Content Preview: %s...", content_preview[:100])
|
||||
|
||||
# Extract chunk content from enriched references
|
||||
# Note: content is now a list of chunks per reference (one file may have multiple chunks)
|
||||
contexts = []
|
||||
for ref in references:
|
||||
content = ref.get("content", [])
|
||||
if isinstance(content, list):
|
||||
# Flatten the list: each chunk becomes a separate context
|
||||
contexts.extend(content)
|
||||
elif isinstance(content, str):
|
||||
# Backward compatibility: if content is still a string (shouldn't happen)
|
||||
contexts.append(content)
|
||||
|
||||
return {
|
||||
"answer": answer,
|
||||
"contexts": contexts, # List of strings from actual retrieved chunks
|
||||
}
|
||||
|
||||
except httpx.ConnectError as e:
|
||||
except httpx.ConnectError:
|
||||
raise Exception(
|
||||
f"❌ Cannot connect to LightRAG API at {self.rag_api_url}\n"
|
||||
f" Make sure LightRAG server is running:\n"
|
||||
f" python -m lightrag.api.lightrag_server\n"
|
||||
f" Error: {str(e)}"
|
||||
)
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise Exception(
|
||||
f"LightRAG API error {e.response.status_code}: {e.response.text}"
|
||||
)
|
||||
except httpx.ReadTimeout as e:
|
||||
raise Exception(
|
||||
f"Request timeout after waiting for response\n"
|
||||
f" Question: {question[:100]}...\n"
|
||||
f" Error: {str(e)}"
|
||||
f" python -m lightrag.api.lightrag_server"
|
||||
)
|
||||
except Exception as e:
|
||||
raise Exception(f"Error calling LightRAG API: {type(e).__name__}: {str(e)}")
|
||||
raise Exception(f"Error calling LightRAG API: {str(e)}")
|
||||
|
||||
async def evaluate_single_case(
|
||||
self,
|
||||
idx: int,
|
||||
test_case: Dict[str, str],
|
||||
semaphore: asyncio.Semaphore,
|
||||
client: httpx.AsyncClient,
|
||||
progress_counter: Dict[str, int],
|
||||
) -> Dict[str, Any]:
|
||||
async def evaluate_responses(self) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Evaluate a single test case with concurrency control
|
||||
|
||||
Args:
|
||||
idx: Test case index (1-based)
|
||||
test_case: Test case dictionary with question and ground_truth
|
||||
semaphore: Semaphore to control concurrency
|
||||
client: Shared httpx AsyncClient for connection pooling
|
||||
progress_counter: Shared dictionary for progress tracking
|
||||
Evaluate all test cases and return metrics
|
||||
|
||||
Returns:
|
||||
Evaluation result dictionary
|
||||
List of evaluation results with metrics
|
||||
"""
|
||||
async with semaphore:
|
||||
print("\n" + "=" * 70)
|
||||
print("🚀 Starting RAGAS Evaluation of Portfolio RAG System")
|
||||
print("=" * 70 + "\n")
|
||||
|
||||
results = []
|
||||
|
||||
for idx, test_case in enumerate(self.test_cases, 1):
|
||||
question = test_case["question"]
|
||||
ground_truth = test_case["ground_truth"]
|
||||
|
||||
print(f"[{idx}/{len(self.test_cases)}] Evaluating: {question[:60]}...")
|
||||
|
||||
# Generate RAG response by calling actual LightRAG API
|
||||
try:
|
||||
rag_response = await self.generate_rag_response(
|
||||
question=question, client=client
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error("Error generating response for test %s: %s", idx, str(e))
|
||||
progress_counter["completed"] += 1
|
||||
return {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"error": str(e),
|
||||
"metrics": {},
|
||||
"ragas_score": 0,
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
rag_response = await self.generate_rag_response(question=question)
|
||||
|
||||
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
|
||||
retrieved_contexts = rag_response["contexts"]
|
||||
|
||||
# DEBUG: Print what was actually retrieved (only in debug mode)
|
||||
logger.debug(
|
||||
"📝 Test %s: Retrieved %s contexts", idx, len(retrieved_contexts)
|
||||
)
|
||||
|
||||
# Prepare dataset for RAGAS evaluation with CORRECT contexts
|
||||
# Prepare dataset for RAGAS evaluation
|
||||
eval_dataset = Dataset.from_dict(
|
||||
{
|
||||
"question": [question],
|
||||
"answer": [rag_response["answer"]],
|
||||
"contexts": [retrieved_contexts],
|
||||
"contexts": [
|
||||
[ground_truth]
|
||||
], # RAGAS expects list of context strings
|
||||
"ground_truth": [ground_truth],
|
||||
}
|
||||
)
|
||||
|
|
@ -404,8 +200,6 @@ class RAGEvaluator:
|
|||
context_recall,
|
||||
context_precision,
|
||||
],
|
||||
llm=self.eval_llm,
|
||||
embeddings=self.eval_embeddings,
|
||||
)
|
||||
|
||||
# Convert to DataFrame (RAGAS v0.3+ API)
|
||||
|
|
@ -416,7 +210,6 @@ class RAGEvaluator:
|
|||
|
||||
# Extract scores (RAGAS v0.3+ uses .to_pandas())
|
||||
result = {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"answer": rag_response["answer"][:200] + "..."
|
||||
if len(rag_response["answer"]) > 200
|
||||
|
|
@ -424,7 +217,7 @@ class RAGEvaluator:
|
|||
"ground_truth": ground_truth[:200] + "..."
|
||||
if len(ground_truth) > 200
|
||||
else ground_truth,
|
||||
"project": test_case.get("project", "unknown"),
|
||||
"project": test_case.get("project_context", "unknown"),
|
||||
"metrics": {
|
||||
"faithfulness": float(scores_row.get("faithfulness", 0)),
|
||||
"answer_relevance": float(
|
||||
|
|
@ -438,79 +231,34 @@ class RAGEvaluator:
|
|||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# Calculate RAGAS score (average of all metrics, excluding NaN values)
|
||||
# Calculate RAGAS score (average of all metrics)
|
||||
metrics = result["metrics"]
|
||||
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
|
||||
ragas_score = (
|
||||
sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
|
||||
)
|
||||
ragas_score = sum(metrics.values()) / len(metrics) if metrics else 0
|
||||
result["ragas_score"] = round(ragas_score, 4)
|
||||
|
||||
# Update progress counter
|
||||
progress_counter["completed"] += 1
|
||||
results.append(result)
|
||||
|
||||
return result
|
||||
# Print metrics
|
||||
print(f" ✅ Faithfulness: {metrics['faithfulness']:.4f}")
|
||||
print(f" ✅ Answer Relevance: {metrics['answer_relevance']:.4f}")
|
||||
print(f" ✅ Context Recall: {metrics['context_recall']:.4f}")
|
||||
print(f" ✅ Context Precision: {metrics['context_precision']:.4f}")
|
||||
print(f" 📊 RAGAS Score: {result['ragas_score']:.4f}\n")
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error evaluating test %s: %s", idx, str(e))
|
||||
progress_counter["completed"] += 1
|
||||
return {
|
||||
"test_number": idx,
|
||||
import traceback
|
||||
print(f" ❌ Error evaluating: {str(e)}")
|
||||
print(f" 🔍 Full traceback:\n{traceback.format_exc()}\n")
|
||||
result = {
|
||||
"question": question,
|
||||
"error": str(e),
|
||||
"metrics": {},
|
||||
"ragas_score": 0,
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
"timestamp": datetime.now().isoformat()
|
||||
}
|
||||
results.append(result)
|
||||
|
||||
async def evaluate_responses(self) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Evaluate all test cases in parallel and return metrics
|
||||
|
||||
Returns:
|
||||
List of evaluation results with metrics
|
||||
"""
|
||||
# Get evaluation concurrency from environment (default to 1 for serial evaluation)
|
||||
max_async = int(os.getenv("EVAL_MAX_CONCURRENT", "3"))
|
||||
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("🚀 Starting RAGAS Evaluation of Portfolio RAG System")
|
||||
logger.info("🔧 Concurrent evaluations: %s", max_async)
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("")
|
||||
|
||||
# Create semaphore to limit concurrent evaluations
|
||||
semaphore = asyncio.Semaphore(max_async)
|
||||
|
||||
# Create progress counter (shared across all tasks)
|
||||
progress_counter = {"completed": 0}
|
||||
|
||||
# Create shared HTTP client with connection pooling and proper timeouts
|
||||
# Timeout: 3 minutes for connect, 5 minutes for read (LLM can be slow)
|
||||
timeout = httpx.Timeout(
|
||||
TOTAL_TIMEOUT_SECONDS,
|
||||
connect=CONNECT_TIMEOUT_SECONDS,
|
||||
read=READ_TIMEOUT_SECONDS,
|
||||
)
|
||||
limits = httpx.Limits(
|
||||
max_connections=max_async * 2, # Allow some buffer
|
||||
max_keepalive_connections=max_async,
|
||||
)
|
||||
|
||||
async with httpx.AsyncClient(timeout=timeout, limits=limits) as client:
|
||||
# Create tasks for all test cases
|
||||
tasks = [
|
||||
self.evaluate_single_case(
|
||||
idx, test_case, semaphore, client, progress_counter
|
||||
)
|
||||
for idx, test_case in enumerate(self.test_cases, 1)
|
||||
]
|
||||
|
||||
# Run all evaluations in parallel (limited by semaphore)
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
return list(results)
|
||||
return results
|
||||
|
||||
def _export_to_csv(self, results: List[Dict[str, Any]]) -> Path:
|
||||
"""
|
||||
|
|
@ -532,9 +280,7 @@ class RAGEvaluator:
|
|||
- ragas_score: Overall RAGAS score (0-1)
|
||||
- timestamp: When evaluation was run
|
||||
"""
|
||||
csv_path = (
|
||||
self.results_dir / f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
||||
)
|
||||
csv_path = self.results_dir / f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
||||
|
||||
with open(csv_path, "w", newline="", encoding="utf-8") as f:
|
||||
fieldnames = [
|
||||
|
|
@ -555,209 +301,21 @@ class RAGEvaluator:
|
|||
|
||||
for idx, result in enumerate(results, 1):
|
||||
metrics = result.get("metrics", {})
|
||||
writer.writerow(
|
||||
{
|
||||
"test_number": idx,
|
||||
"question": result.get("question", ""),
|
||||
"project": result.get("project", "unknown"),
|
||||
"faithfulness": f"{metrics.get('faithfulness', 0):.4f}",
|
||||
"answer_relevance": f"{metrics.get('answer_relevance', 0):.4f}",
|
||||
"context_recall": f"{metrics.get('context_recall', 0):.4f}",
|
||||
"context_precision": f"{metrics.get('context_precision', 0):.4f}",
|
||||
"ragas_score": f"{result.get('ragas_score', 0):.4f}",
|
||||
"status": "success" if metrics else "error",
|
||||
"timestamp": result.get("timestamp", ""),
|
||||
}
|
||||
)
|
||||
writer.writerow({
|
||||
"test_number": idx,
|
||||
"question": result.get("question", ""),
|
||||
"project": result.get("project", "unknown"),
|
||||
"faithfulness": f"{metrics.get('faithfulness', 0):.4f}",
|
||||
"answer_relevance": f"{metrics.get('answer_relevance', 0):.4f}",
|
||||
"context_recall": f"{metrics.get('context_recall', 0):.4f}",
|
||||
"context_precision": f"{metrics.get('context_precision', 0):.4f}",
|
||||
"ragas_score": f"{result.get('ragas_score', 0):.4f}",
|
||||
"status": "success" if metrics else "error",
|
||||
"timestamp": result.get("timestamp", ""),
|
||||
})
|
||||
|
||||
return csv_path
|
||||
|
||||
def _format_metric(self, value: float, width: int = 6) -> str:
|
||||
"""
|
||||
Format a metric value for display, handling NaN gracefully
|
||||
|
||||
Args:
|
||||
value: The metric value to format
|
||||
width: The width of the formatted string
|
||||
|
||||
Returns:
|
||||
Formatted string (e.g., "0.8523" or " N/A ")
|
||||
"""
|
||||
if _is_nan(value):
|
||||
return "N/A".center(width)
|
||||
return f"{value:.4f}".rjust(width)
|
||||
|
||||
def _display_results_table(self, results: List[Dict[str, Any]]):
|
||||
"""
|
||||
Display evaluation results in a formatted table
|
||||
|
||||
Args:
|
||||
results: List of evaluation results
|
||||
"""
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 115)
|
||||
logger.info("📊 EVALUATION RESULTS SUMMARY")
|
||||
logger.info("%s", "=" * 115)
|
||||
|
||||
# Table header
|
||||
logger.info(
|
||||
"%-4s | %-50s | %6s | %7s | %6s | %7s | %6s | %6s",
|
||||
"#",
|
||||
"Question",
|
||||
"Faith",
|
||||
"AnswRel",
|
||||
"CtxRec",
|
||||
"CtxPrec",
|
||||
"RAGAS",
|
||||
"Status",
|
||||
)
|
||||
logger.info("%s", "-" * 115)
|
||||
|
||||
# Table rows
|
||||
for result in results:
|
||||
test_num = result.get("test_number", 0)
|
||||
question = result.get("question", "")
|
||||
# Truncate question to 50 chars
|
||||
question_display = (
|
||||
(question[:47] + "...") if len(question) > 50 else question
|
||||
)
|
||||
|
||||
metrics = result.get("metrics", {})
|
||||
if metrics:
|
||||
# Success case - format each metric, handling NaN values
|
||||
faith = metrics.get("faithfulness", 0)
|
||||
ans_rel = metrics.get("answer_relevance", 0)
|
||||
ctx_rec = metrics.get("context_recall", 0)
|
||||
ctx_prec = metrics.get("context_precision", 0)
|
||||
ragas = result.get("ragas_score", 0)
|
||||
status = "✓"
|
||||
|
||||
logger.info(
|
||||
"%-4d | %-50s | %s | %s | %s | %s | %s | %6s",
|
||||
test_num,
|
||||
question_display,
|
||||
self._format_metric(faith, 6),
|
||||
self._format_metric(ans_rel, 7),
|
||||
self._format_metric(ctx_rec, 6),
|
||||
self._format_metric(ctx_prec, 7),
|
||||
self._format_metric(ragas, 6),
|
||||
status,
|
||||
)
|
||||
else:
|
||||
# Error case
|
||||
error = result.get("error", "Unknown error")
|
||||
error_display = (error[:20] + "...") if len(error) > 23 else error
|
||||
logger.info(
|
||||
"%-4d | %-50s | %6s | %7s | %6s | %7s | %6s | ✗ %s",
|
||||
test_num,
|
||||
question_display,
|
||||
"N/A",
|
||||
"N/A",
|
||||
"N/A",
|
||||
"N/A",
|
||||
"N/A",
|
||||
error_display,
|
||||
)
|
||||
|
||||
logger.info("%s", "=" * 115)
|
||||
|
||||
def _calculate_benchmark_stats(
|
||||
self, results: List[Dict[str, Any]]
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Calculate benchmark statistics from evaluation results
|
||||
|
||||
Args:
|
||||
results: List of evaluation results
|
||||
|
||||
Returns:
|
||||
Dictionary with benchmark statistics
|
||||
"""
|
||||
# Filter out results with errors
|
||||
valid_results = [r for r in results if r.get("metrics")]
|
||||
total_tests = len(results)
|
||||
successful_tests = len(valid_results)
|
||||
failed_tests = total_tests - successful_tests
|
||||
|
||||
if not valid_results:
|
||||
return {
|
||||
"total_tests": total_tests,
|
||||
"successful_tests": 0,
|
||||
"failed_tests": failed_tests,
|
||||
"success_rate": 0.0,
|
||||
}
|
||||
|
||||
# Calculate averages for each metric (handling NaN values correctly)
|
||||
# Track both sum and count for each metric to handle NaN values properly
|
||||
metrics_data = {
|
||||
"faithfulness": {"sum": 0.0, "count": 0},
|
||||
"answer_relevance": {"sum": 0.0, "count": 0},
|
||||
"context_recall": {"sum": 0.0, "count": 0},
|
||||
"context_precision": {"sum": 0.0, "count": 0},
|
||||
"ragas_score": {"sum": 0.0, "count": 0},
|
||||
}
|
||||
|
||||
for result in valid_results:
|
||||
metrics = result.get("metrics", {})
|
||||
|
||||
# For each metric, sum non-NaN values and count them
|
||||
faithfulness = metrics.get("faithfulness", 0)
|
||||
if not _is_nan(faithfulness):
|
||||
metrics_data["faithfulness"]["sum"] += faithfulness
|
||||
metrics_data["faithfulness"]["count"] += 1
|
||||
|
||||
answer_relevance = metrics.get("answer_relevance", 0)
|
||||
if not _is_nan(answer_relevance):
|
||||
metrics_data["answer_relevance"]["sum"] += answer_relevance
|
||||
metrics_data["answer_relevance"]["count"] += 1
|
||||
|
||||
context_recall = metrics.get("context_recall", 0)
|
||||
if not _is_nan(context_recall):
|
||||
metrics_data["context_recall"]["sum"] += context_recall
|
||||
metrics_data["context_recall"]["count"] += 1
|
||||
|
||||
context_precision = metrics.get("context_precision", 0)
|
||||
if not _is_nan(context_precision):
|
||||
metrics_data["context_precision"]["sum"] += context_precision
|
||||
metrics_data["context_precision"]["count"] += 1
|
||||
|
||||
ragas_score = result.get("ragas_score", 0)
|
||||
if not _is_nan(ragas_score):
|
||||
metrics_data["ragas_score"]["sum"] += ragas_score
|
||||
metrics_data["ragas_score"]["count"] += 1
|
||||
|
||||
# Calculate averages using actual counts for each metric
|
||||
avg_metrics = {}
|
||||
for metric_name, data in metrics_data.items():
|
||||
if data["count"] > 0:
|
||||
avg_val = data["sum"] / data["count"]
|
||||
avg_metrics[metric_name] = (
|
||||
round(avg_val, 4) if not _is_nan(avg_val) else 0.0
|
||||
)
|
||||
else:
|
||||
avg_metrics[metric_name] = 0.0
|
||||
|
||||
# Find min and max RAGAS scores (filter out NaN)
|
||||
ragas_scores = []
|
||||
for r in valid_results:
|
||||
score = r.get("ragas_score", 0)
|
||||
if _is_nan(score):
|
||||
continue # Skip NaN values
|
||||
ragas_scores.append(score)
|
||||
|
||||
min_score = min(ragas_scores) if ragas_scores else 0
|
||||
max_score = max(ragas_scores) if ragas_scores else 0
|
||||
|
||||
return {
|
||||
"total_tests": total_tests,
|
||||
"successful_tests": successful_tests,
|
||||
"failed_tests": failed_tests,
|
||||
"success_rate": round(successful_tests / total_tests * 100, 2),
|
||||
"average_metrics": avg_metrics,
|
||||
"min_ragas_score": round(min_score, 4),
|
||||
"max_ragas_score": round(max_score, 4),
|
||||
}
|
||||
|
||||
async def run(self) -> Dict[str, Any]:
|
||||
"""Run complete evaluation pipeline"""
|
||||
|
||||
|
|
@ -768,86 +326,35 @@ class RAGEvaluator:
|
|||
|
||||
elapsed_time = time.time() - start_time
|
||||
|
||||
# Add a small delay to ensure all buffered output is completely written
|
||||
await asyncio.sleep(0.2)
|
||||
|
||||
# Flush all output buffers to ensure RAGAS progress bars are fully displayed
|
||||
# before showing our results table
|
||||
sys.stdout.flush()
|
||||
sys.stderr.flush()
|
||||
# Make sure the progress bar line ends before logging summary output
|
||||
sys.stderr.write("\n")
|
||||
sys.stderr.flush()
|
||||
|
||||
# Display results table
|
||||
self._display_results_table(results)
|
||||
|
||||
# Calculate benchmark statistics
|
||||
benchmark_stats = self._calculate_benchmark_stats(results)
|
||||
|
||||
# Save results
|
||||
summary = {
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
"total_tests": len(results),
|
||||
"elapsed_time_seconds": round(elapsed_time, 2),
|
||||
"benchmark_stats": benchmark_stats,
|
||||
"results": results,
|
||||
"results": results
|
||||
}
|
||||
|
||||
# Save JSON results
|
||||
json_path = (
|
||||
self.results_dir
|
||||
/ f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
||||
)
|
||||
json_path = self.results_dir / f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
||||
with open(json_path, "w") as f:
|
||||
json.dump(summary, f, indent=2)
|
||||
logger.info("✅ JSON results saved to: %s", json_path)
|
||||
print(f"✅ JSON results saved to: {json_path}")
|
||||
|
||||
# Export to CSV
|
||||
csv_path = self._export_to_csv(results)
|
||||
logger.info("✅ CSV results saved to: %s", csv_path)
|
||||
print(f"✅ CSV results saved to: {csv_path}")
|
||||
|
||||
# Print summary
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("📊 EVALUATION COMPLETE")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("Total Tests: %s", len(results))
|
||||
logger.info("Successful: %s", benchmark_stats["successful_tests"])
|
||||
logger.info("Failed: %s", benchmark_stats["failed_tests"])
|
||||
logger.info("Success Rate: %.2f%%", benchmark_stats["success_rate"])
|
||||
logger.info("Elapsed Time: %.2f seconds", elapsed_time)
|
||||
logger.info("Avg Time/Test: %.2f seconds", elapsed_time / len(results))
|
||||
|
||||
# Print benchmark metrics
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("📈 BENCHMARK RESULTS (Average)")
|
||||
logger.info("%s", "=" * 70)
|
||||
avg = benchmark_stats["average_metrics"]
|
||||
logger.info("Average Faithfulness: %.4f", avg["faithfulness"])
|
||||
logger.info("Average Answer Relevance: %.4f", avg["answer_relevance"])
|
||||
logger.info("Average Context Recall: %.4f", avg["context_recall"])
|
||||
logger.info("Average Context Precision: %.4f", avg["context_precision"])
|
||||
logger.info("Average RAGAS Score: %.4f", avg["ragas_score"])
|
||||
logger.info("")
|
||||
logger.info(
|
||||
"Min RAGAS Score: %.4f",
|
||||
benchmark_stats["min_ragas_score"],
|
||||
)
|
||||
logger.info(
|
||||
"Max RAGAS Score: %.4f",
|
||||
benchmark_stats["max_ragas_score"],
|
||||
)
|
||||
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("📁 GENERATED FILES")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("Results Dir: %s", self.results_dir.absolute())
|
||||
logger.info(" • CSV: %s", csv_path.name)
|
||||
logger.info(" • JSON: %s", json_path.name)
|
||||
logger.info("%s", "=" * 70)
|
||||
print("\n" + "="*70)
|
||||
print("📊 EVALUATION COMPLETE")
|
||||
print("="*70)
|
||||
print(f"Total Tests: {len(results)}")
|
||||
print(f"Elapsed Time: {elapsed_time:.2f} seconds")
|
||||
print(f"Results Dir: {self.results_dir.absolute()}")
|
||||
print("\n📁 Generated Files:")
|
||||
print(f" • CSV: {csv_path.name}")
|
||||
print(f" • JSON: {json_path.name}")
|
||||
print("="*70 + "\n")
|
||||
|
||||
return summary
|
||||
|
||||
|
|
@ -858,8 +365,8 @@ async def main():
|
|||
|
||||
Usage:
|
||||
python lightrag/evaluation/eval_rag_quality.py
|
||||
python lightrag/evaluation/eval_rag_quality.py http://localhost:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py http://your-server.com:9621
|
||||
python lightrag/evaluation/eval_rag_quality.py http://localhost:8000
|
||||
python lightrag/evaluation/eval_rag_quality.py http://your-server.com:8000
|
||||
"""
|
||||
try:
|
||||
# Get RAG API URL from command line or environment
|
||||
|
|
@ -867,20 +374,19 @@ async def main():
|
|||
if len(sys.argv) > 1:
|
||||
rag_api_url = sys.argv[1]
|
||||
|
||||
logger.info("")
|
||||
logger.info("%s", "=" * 70)
|
||||
logger.info("🔍 RAGAS Evaluation - Using Real LightRAG API")
|
||||
logger.info("%s", "=" * 70)
|
||||
print("\n" + "="*70)
|
||||
print("🔍 RAGAS Evaluation - Using Real LightRAG API")
|
||||
print("="*70)
|
||||
if rag_api_url:
|
||||
logger.info("📡 RAG API URL: %s", rag_api_url)
|
||||
print(f"📡 RAG API URL: {rag_api_url}")
|
||||
else:
|
||||
logger.info("📡 RAG API URL: http://localhost:9621 (default)")
|
||||
logger.info("%s", "=" * 70)
|
||||
print(f"📡 RAG API URL: http://localhost:8000 (default)")
|
||||
print("="*70 + "\n")
|
||||
|
||||
evaluator = RAGEvaluator(rag_api_url=rag_api_url)
|
||||
await evaluator.run()
|
||||
except Exception as e:
|
||||
logger.exception("❌ Error: %s", e)
|
||||
print(f"\n❌ Error: {str(e)}\n")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -150,6 +150,15 @@ observability = [
|
|||
>>>>>>> 69a0b74c (refactor: move document deps to api group, remove dynamic imports)
|
||||
]
|
||||
|
||||
evaluation = [
|
||||
# RAG evaluation dependencies (RAGAS framework)
|
||||
"ragas>=0.3.7",
|
||||
"datasets>=4.3.0",
|
||||
"httpx>=0.28.1",
|
||||
"pytest>=8.4.2",
|
||||
"pytest-asyncio>=1.2.0",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
lightrag-server = "lightrag.api.lightrag_server:main"
|
||||
lightrag-gunicorn = "lightrag.api.run_with_gunicorn:main"
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue