cherry-pick 3cb4eae4
This commit is contained in:
parent
f4251432a6
commit
43eb873d63
2 changed files with 230 additions and 351 deletions
|
|
@ -114,24 +114,44 @@ def _format_history_messages(history_messages: list[dict[str, Any]] | None) -> s
|
|||
return "\n".join(history_lines)
|
||||
|
||||
|
||||
def _extract_response_text(response: Any) -> str:
|
||||
if getattr(response, "text", None):
|
||||
return response.text
|
||||
def _extract_response_text(
|
||||
response: Any, extract_thoughts: bool = False
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Extract text content from Gemini response, separating regular content from thoughts.
|
||||
|
||||
Args:
|
||||
response: Gemini API response object
|
||||
extract_thoughts: Whether to extract thought content separately
|
||||
|
||||
Returns:
|
||||
Tuple of (regular_text, thought_text)
|
||||
"""
|
||||
candidates = getattr(response, "candidates", None)
|
||||
if not candidates:
|
||||
return ""
|
||||
return ("", "")
|
||||
|
||||
regular_parts: list[str] = []
|
||||
thought_parts: list[str] = []
|
||||
|
||||
parts: list[str] = []
|
||||
for candidate in candidates:
|
||||
if not getattr(candidate, "content", None):
|
||||
continue
|
||||
for part in getattr(candidate.content, "parts", []):
|
||||
# Use 'or []' to handle None values from parts attribute
|
||||
for part in getattr(candidate.content, "parts", None) or []:
|
||||
text = getattr(part, "text", None)
|
||||
if text:
|
||||
parts.append(text)
|
||||
if not text:
|
||||
continue
|
||||
|
||||
return "\n".join(parts)
|
||||
# Check if this part is thought content using the 'thought' attribute
|
||||
is_thought = getattr(part, "thought", False)
|
||||
|
||||
if is_thought and extract_thoughts:
|
||||
thought_parts.append(text)
|
||||
elif not is_thought:
|
||||
regular_parts.append(text)
|
||||
|
||||
return ("\n".join(regular_parts), "\n".join(thought_parts))
|
||||
|
||||
|
||||
async def gemini_complete_if_cache(
|
||||
|
|
@ -139,18 +159,51 @@ async def gemini_complete_if_cache(
|
|||
prompt: str,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
*,
|
||||
api_key: str | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
generation_config: dict[str, Any] | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
hashing_kv: Any | None = None, # noqa: ARG001 - present for interface parity
|
||||
stream: bool | None = None,
|
||||
enable_cot: bool = False, # noqa: ARG001 - not supported by Gemini currently
|
||||
timeout: float | None = None, # noqa: ARG001 - handled by caller if needed
|
||||
keyword_extraction: bool = False,
|
||||
generation_config: dict[str, Any] | None = None,
|
||||
**_: Any,
|
||||
) -> str | AsyncIterator[str]:
|
||||
"""
|
||||
Complete a prompt using Gemini's API with Chain of Thought (COT) support.
|
||||
|
||||
This function supports automatic integration of reasoning content from Gemini models
|
||||
that provide Chain of Thought capabilities via the thinking_config API feature.
|
||||
|
||||
COT Integration:
|
||||
- When enable_cot=True: Thought content is wrapped in <think>...</think> tags
|
||||
- When enable_cot=False: Thought content is filtered out, only regular content returned
|
||||
- Thought content is identified by the 'thought' attribute on response parts
|
||||
- Requires thinking_config to be enabled in generation_config for API to return thoughts
|
||||
|
||||
Args:
|
||||
model: The Gemini model to use.
|
||||
prompt: The prompt to complete.
|
||||
system_prompt: Optional system prompt to include.
|
||||
history_messages: Optional list of previous messages in the conversation.
|
||||
api_key: Optional Gemini API key. If None, uses environment variable.
|
||||
base_url: Optional custom API endpoint.
|
||||
generation_config: Optional generation configuration dict.
|
||||
keyword_extraction: Whether to use JSON response format.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
hashing_kv: Storage interface (for interface parity with other bindings).
|
||||
stream: Whether to stream the response.
|
||||
enable_cot: Whether to include Chain of Thought content in the response.
|
||||
timeout: Request timeout (handled by caller if needed).
|
||||
**_: Additional keyword arguments (ignored).
|
||||
|
||||
Returns:
|
||||
The completed text (with COT content if enable_cot=True) or an async iterator
|
||||
of text chunks if streaming. COT content is wrapped in <think>...</think> tags.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the response from Gemini is empty.
|
||||
ValueError: If API key is not provided or configured.
|
||||
"""
|
||||
loop = asyncio.get_running_loop()
|
||||
|
||||
key = _ensure_api_key(api_key)
|
||||
|
|
@ -184,6 +237,11 @@ async def gemini_complete_if_cache(
|
|||
usage_container: dict[str, Any] = {}
|
||||
|
||||
def _stream_model() -> None:
|
||||
# COT state tracking for streaming
|
||||
cot_active = False
|
||||
cot_started = False
|
||||
initial_content_seen = False
|
||||
|
||||
try:
|
||||
stream_kwargs = dict(request_kwargs)
|
||||
stream_iterator = client.models.generate_content_stream(**stream_kwargs)
|
||||
|
|
@ -191,18 +249,59 @@ async def gemini_complete_if_cache(
|
|||
usage = getattr(chunk, "usage_metadata", None)
|
||||
if usage is not None:
|
||||
usage_container["usage"] = usage
|
||||
text_piece = getattr(chunk, "text", None) or _extract_response_text(chunk)
|
||||
if text_piece:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, text_piece)
|
||||
|
||||
# Extract both regular and thought content
|
||||
regular_text, thought_text = _extract_response_text(
|
||||
chunk, extract_thoughts=True
|
||||
)
|
||||
|
||||
if enable_cot:
|
||||
# Process regular content
|
||||
if regular_text:
|
||||
if not initial_content_seen:
|
||||
initial_content_seen = True
|
||||
|
||||
# Close COT section if it was active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
cot_active = False
|
||||
|
||||
# Send regular content
|
||||
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||
|
||||
# Process thought content
|
||||
if thought_text:
|
||||
if not initial_content_seen and not cot_started:
|
||||
# Start COT section
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "<think>")
|
||||
cot_active = True
|
||||
cot_started = True
|
||||
|
||||
# Send thought content if COT is active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, thought_text)
|
||||
else:
|
||||
# COT disabled - only send regular content
|
||||
if regular_text:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||
|
||||
# Ensure COT is properly closed if still active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
|
||||
loop.call_soon_threadsafe(queue.put_nowait, None)
|
||||
except Exception as exc: # pragma: no cover - surface runtime issues
|
||||
# Try to close COT tag before reporting error
|
||||
if cot_active:
|
||||
try:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
except Exception:
|
||||
pass
|
||||
loop.call_soon_threadsafe(queue.put_nowait, exc)
|
||||
|
||||
loop.run_in_executor(None, _stream_model)
|
||||
|
||||
async def _async_stream() -> AsyncIterator[str]:
|
||||
accumulated = ""
|
||||
emitted = ""
|
||||
try:
|
||||
while True:
|
||||
item = await queue.get()
|
||||
|
|
@ -215,16 +314,9 @@ async def gemini_complete_if_cache(
|
|||
if "\\u" in chunk_text:
|
||||
chunk_text = safe_unicode_decode(chunk_text.encode("utf-8"))
|
||||
|
||||
accumulated += chunk_text
|
||||
sanitized = remove_think_tags(accumulated)
|
||||
if sanitized.startswith(emitted):
|
||||
delta = sanitized[len(emitted) :]
|
||||
else:
|
||||
delta = sanitized
|
||||
emitted = sanitized
|
||||
|
||||
if delta:
|
||||
yield delta
|
||||
# Yield the chunk directly without filtering
|
||||
# COT filtering is already handled in _stream_model()
|
||||
yield chunk_text
|
||||
finally:
|
||||
usage = usage_container.get("usage")
|
||||
if token_tracker and usage:
|
||||
|
|
@ -242,14 +334,33 @@ async def gemini_complete_if_cache(
|
|||
|
||||
response = await asyncio.to_thread(_call_model)
|
||||
|
||||
text = _extract_response_text(response)
|
||||
if not text:
|
||||
# Extract both regular text and thought text
|
||||
regular_text, thought_text = _extract_response_text(response, extract_thoughts=True)
|
||||
|
||||
# Apply COT filtering logic based on enable_cot parameter
|
||||
if enable_cot:
|
||||
# Include thought content wrapped in <think> tags
|
||||
if thought_text and thought_text.strip():
|
||||
if not regular_text or regular_text.strip() == "":
|
||||
# Only thought content available
|
||||
final_text = f"<think>{thought_text}</think>"
|
||||
else:
|
||||
# Both content types present: prepend thought to regular content
|
||||
final_text = f"<think>{thought_text}</think>{regular_text}"
|
||||
else:
|
||||
# No thought content, use regular content only
|
||||
final_text = regular_text or ""
|
||||
else:
|
||||
# Filter out thought content, return only regular content
|
||||
final_text = regular_text or ""
|
||||
|
||||
if not final_text:
|
||||
raise RuntimeError("Gemini response did not contain any text content.")
|
||||
|
||||
if "\\u" in text:
|
||||
text = safe_unicode_decode(text.encode("utf-8"))
|
||||
if "\\u" in final_text:
|
||||
final_text = safe_unicode_decode(final_text.encode("utf-8"))
|
||||
|
||||
text = remove_think_tags(text)
|
||||
final_text = remove_think_tags(final_text)
|
||||
|
||||
usage = getattr(response, "usage_metadata", None)
|
||||
if token_tracker and usage:
|
||||
|
|
@ -261,8 +372,8 @@ async def gemini_complete_if_cache(
|
|||
}
|
||||
)
|
||||
|
||||
logger.debug("Gemini response length: %s", len(text))
|
||||
return text
|
||||
logger.debug("Gemini response length: %s", len(final_text))
|
||||
return final_text
|
||||
|
||||
|
||||
async def gemini_model_complete(
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@ try:
|
|||
|
||||
# Only enable Langfuse if both keys are configured
|
||||
if langfuse_public_key and langfuse_secret_key:
|
||||
from langfuse.openai import AsyncOpenAI # type: ignore[import-untyped]
|
||||
from langfuse.openai import AsyncOpenAI
|
||||
|
||||
LANGFUSE_ENABLED = True
|
||||
logger.info("Langfuse observability enabled for OpenAI client")
|
||||
|
|
@ -77,73 +77,46 @@ class InvalidResponseError(Exception):
|
|||
def create_openai_async_client(
|
||||
api_key: str | None = None,
|
||||
base_url: str | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
timeout: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
) -> AsyncOpenAI:
|
||||
"""Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration.
|
||||
"""Create an AsyncOpenAI client with the given configuration.
|
||||
|
||||
Args:
|
||||
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
|
||||
use_azure: Whether to create an Azure OpenAI client. Default is False.
|
||||
azure_deployment: Azure OpenAI deployment name (only used when use_azure=True).
|
||||
api_version: Azure OpenAI API version (only used when use_azure=True).
|
||||
timeout: Request timeout in seconds.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
||||
Returns:
|
||||
An AsyncOpenAI or AsyncAzureOpenAI client instance.
|
||||
An AsyncOpenAI client instance.
|
||||
"""
|
||||
if use_azure:
|
||||
from openai import AsyncAzureOpenAI
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
if not api_key:
|
||||
api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get(
|
||||
"LLM_BINDING_API_KEY"
|
||||
)
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
return AsyncAzureOpenAI(
|
||||
azure_endpoint=base_url,
|
||||
azure_deployment=azure_deployment,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
)
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
else:
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
)
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
else:
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
)
|
||||
|
||||
if timeout is not None:
|
||||
merged_configs["timeout"] = timeout
|
||||
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
|
||||
|
||||
@retry(
|
||||
|
|
@ -165,12 +138,6 @@ async def openai_complete_if_cache(
|
|||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||
|
|
@ -200,15 +167,14 @@ async def openai_complete_if_cache(
|
|||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False.
|
||||
stream: Whether to stream the response. Default is False.
|
||||
timeout: Request timeout in seconds. Default is None.
|
||||
keyword_extraction: Whether to enable keyword extraction mode. When True, triggers
|
||||
special response formatting for keyword extraction. Default is False.
|
||||
**kwargs: Additional keyword arguments to pass to the OpenAI API.
|
||||
Special kwargs:
|
||||
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
|
||||
These will be passed to the client constructor but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
||||
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
||||
- stream: Whether to stream the response. Default is False.
|
||||
|
||||
Returns:
|
||||
The completed text (with integrated COT content if available) or an async iterator
|
||||
|
|
@ -229,22 +195,15 @@ async def openai_complete_if_cache(
|
|||
|
||||
# Remove special kwargs that shouldn't be passed to OpenAI
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
|
||||
# Extract client configuration options
|
||||
client_configs = kwargs.pop("openai_client_configs", {})
|
||||
|
||||
# Handle keyword extraction mode
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
# Create the OpenAI client
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
client_configs=client_configs,
|
||||
)
|
||||
|
||||
|
|
@ -266,16 +225,10 @@ async def openai_complete_if_cache(
|
|||
|
||||
messages = kwargs.pop("messages", messages)
|
||||
|
||||
# Add explicit parameters back to kwargs so they're passed to OpenAI API
|
||||
if stream is not None:
|
||||
kwargs["stream"] = stream
|
||||
if timeout is not None:
|
||||
kwargs["timeout"] = timeout
|
||||
|
||||
try:
|
||||
# Don't use async with context manager, use client directly
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.chat.completions.parse(
|
||||
response = await openai_async_client.beta.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
|
|
@ -487,57 +440,46 @@ async def openai_complete_if_cache(
|
|||
raise InvalidResponseError("Invalid response from OpenAI API")
|
||||
|
||||
message = response.choices[0].message
|
||||
content = getattr(message, "content", None)
|
||||
reasoning_content = getattr(message, "reasoning_content", "")
|
||||
|
||||
# Handle parsed responses (structured output via response_format)
|
||||
# When using beta.chat.completions.parse(), the response is in message.parsed
|
||||
if hasattr(message, "parsed") and message.parsed is not None:
|
||||
# Serialize the parsed structured response to JSON
|
||||
final_content = message.parsed.model_dump_json()
|
||||
logger.debug("Using parsed structured response from API")
|
||||
else:
|
||||
# Handle regular content responses
|
||||
content = getattr(message, "content", None)
|
||||
reasoning_content = getattr(message, "reasoning_content", "")
|
||||
# Handle COT logic for non-streaming responses (only if enabled)
|
||||
final_content = ""
|
||||
|
||||
# Handle COT logic for non-streaming responses (only if enabled)
|
||||
final_content = ""
|
||||
|
||||
if enable_cot:
|
||||
# Check if we should include reasoning content
|
||||
should_include_reasoning = False
|
||||
if reasoning_content and reasoning_content.strip():
|
||||
if not content or content.strip() == "":
|
||||
# Case 1: Only reasoning content, should include COT
|
||||
should_include_reasoning = True
|
||||
final_content = (
|
||||
content or ""
|
||||
) # Use empty string if content is None
|
||||
else:
|
||||
# Case 3: Both content and reasoning_content present, ignore reasoning
|
||||
should_include_reasoning = False
|
||||
final_content = content
|
||||
else:
|
||||
# No reasoning content, use regular content
|
||||
final_content = content or ""
|
||||
|
||||
# Apply COT wrapping if needed
|
||||
if should_include_reasoning:
|
||||
if r"\u" in reasoning_content:
|
||||
reasoning_content = safe_unicode_decode(
|
||||
reasoning_content.encode("utf-8")
|
||||
)
|
||||
if enable_cot:
|
||||
# Check if we should include reasoning content
|
||||
should_include_reasoning = False
|
||||
if reasoning_content and reasoning_content.strip():
|
||||
if not content or content.strip() == "":
|
||||
# Case 1: Only reasoning content, should include COT
|
||||
should_include_reasoning = True
|
||||
final_content = (
|
||||
f"<think>{reasoning_content}</think>{final_content}"
|
||||
)
|
||||
content or ""
|
||||
) # Use empty string if content is None
|
||||
else:
|
||||
# Case 3: Both content and reasoning_content present, ignore reasoning
|
||||
should_include_reasoning = False
|
||||
final_content = content
|
||||
else:
|
||||
# COT disabled, only use regular content
|
||||
# No reasoning content, use regular content
|
||||
final_content = content or ""
|
||||
|
||||
# Validate final content
|
||||
if not final_content or final_content.strip() == "":
|
||||
logger.error("Received empty content from OpenAI API")
|
||||
await openai_async_client.close() # Ensure client is closed
|
||||
raise InvalidResponseError("Received empty content from OpenAI API")
|
||||
# Apply COT wrapping if needed
|
||||
if should_include_reasoning:
|
||||
if r"\u" in reasoning_content:
|
||||
reasoning_content = safe_unicode_decode(
|
||||
reasoning_content.encode("utf-8")
|
||||
)
|
||||
final_content = f"<think>{reasoning_content}</think>{final_content}"
|
||||
else:
|
||||
# COT disabled, only use regular content
|
||||
final_content = content or ""
|
||||
|
||||
# Validate final content
|
||||
if not final_content or final_content.strip() == "":
|
||||
logger.error("Received empty content from OpenAI API")
|
||||
await openai_async_client.close() # Ensure client is closed
|
||||
raise InvalidResponseError("Received empty content from OpenAI API")
|
||||
|
||||
# Apply Unicode decoding to final content if needed
|
||||
if r"\u" in final_content:
|
||||
|
|
@ -571,13 +513,15 @@ async def openai_complete(
|
|||
) -> Union[str, AsyncIterator[str]]:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await openai_complete_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -592,13 +536,15 @@ async def gpt_4o_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -613,13 +559,15 @@ async def gpt_4o_mini_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -634,20 +582,20 @@ async def nvidia_openai_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
result = await openai_complete_if_cache(
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
base_url="https://integrate.api.nvidia.com/v1",
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
|
|
@ -662,12 +610,8 @@ async def openai_embed(
|
|||
model: str = "text-embedding-3-small",
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
embedding_dim: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Generate embeddings for a list of texts using OpenAI's API.
|
||||
|
||||
|
|
@ -676,12 +620,6 @@ async def openai_embed(
|
|||
model: The OpenAI embedding model to use.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
|
||||
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
|
||||
Do NOT manually pass this parameter when calling the function directly.
|
||||
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
|
||||
Manually passing a different value will trigger a warning and be ignored.
|
||||
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
|
@ -695,30 +633,15 @@ async def openai_embed(
|
|||
RateLimitError: If the OpenAI API rate limit is exceeded.
|
||||
APITimeoutError: If the OpenAI API request times out.
|
||||
"""
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
# Create the OpenAI client
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
client_configs=client_configs,
|
||||
api_key=api_key, base_url=base_url, client_configs=client_configs
|
||||
)
|
||||
|
||||
async with openai_async_client:
|
||||
# Prepare API call parameters
|
||||
api_params = {
|
||||
"model": model,
|
||||
"input": texts,
|
||||
"encoding_format": "base64",
|
||||
}
|
||||
|
||||
# Add dimensions parameter only if embedding_dim is provided
|
||||
if embedding_dim is not None:
|
||||
api_params["dimensions"] = embedding_dim
|
||||
|
||||
# Make API call
|
||||
response = await openai_async_client.embeddings.create(**api_params)
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="base64"
|
||||
)
|
||||
|
||||
if token_tracker and hasattr(response, "usage"):
|
||||
token_counts = {
|
||||
|
|
@ -735,158 +658,3 @@ async def openai_embed(
|
|||
for dp in response.data
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# Azure OpenAI wrapper functions for backward compatibility
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""Azure OpenAI completion wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_complete_if_cache implementation with Azure-specific parameter handling.
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
||||
base_url = (
|
||||
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
# Pop timeout from kwargs if present (will be handled by openai_complete_if_cache)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
# Call the unified implementation with Azure-specific parameters
|
||||
return await openai_complete_if_cache(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
timeout=timeout,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=None,
|
||||
keyword_extraction=False,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
"""Azure OpenAI complete wrapper function.
|
||||
|
||||
Provides backward compatibility for azure_openai_complete calls.
|
||||
"""
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
result = await azure_openai_complete_if_cache(
|
||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
async def azure_openai_embed(
|
||||
texts: list[str],
|
||||
model: str | None = None,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Azure OpenAI embedding wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_embed implementation with Azure-specific parameter handling.
|
||||
|
||||
IMPORTANT - Decorator Usage:
|
||||
|
||||
1. This function is decorated with @wrap_embedding_func_with_attrs to provide
|
||||
the EmbeddingFunc interface for users who need to access embedding_dim
|
||||
and other attributes.
|
||||
|
||||
2. This function does NOT use @retry decorator to avoid double-wrapping,
|
||||
since the underlying openai_embed.func already has retry logic.
|
||||
|
||||
3. This function calls openai_embed.func (the unwrapped function) instead of
|
||||
openai_embed (the EmbeddingFunc instance) to avoid double decoration issues:
|
||||
|
||||
✅ Correct: await openai_embed.func(...) # Calls unwrapped function with retry
|
||||
❌ Wrong: await openai_embed(...) # Would cause double EmbeddingFunc wrapping
|
||||
|
||||
Double decoration causes:
|
||||
- Double injection of embedding_dim parameter
|
||||
- Incorrect parameter passing to the underlying implementation
|
||||
- Runtime errors due to parameter conflicts
|
||||
|
||||
The call chain with correct implementation:
|
||||
azure_openai_embed(texts)
|
||||
→ EmbeddingFunc.__call__(texts) # azure's decorator
|
||||
→ azure_openai_embed_impl(texts, embedding_dim=1536)
|
||||
→ openai_embed.func(texts, ...)
|
||||
→ @retry_wrapper(texts, ...) # openai's retry (only one layer)
|
||||
→ openai_embed_impl(texts, ...)
|
||||
→ actual embedding computation
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = (
|
||||
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||
or model
|
||||
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
)
|
||||
base_url = (
|
||||
base_url
|
||||
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
||||
or os.getenv("EMBEDDING_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key
|
||||
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
||||
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
# CRITICAL: Call openai_embed.func (unwrapped) to avoid double decoration
|
||||
# openai_embed is an EmbeddingFunc instance, .func accesses the underlying function
|
||||
return await openai_embed.func(
|
||||
texts=texts,
|
||||
model=model or deployment,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue