Merge branch 'bedrock-support'
This commit is contained in:
commit
3a7310873c
6 changed files with 295 additions and 89 deletions
|
|
@ -123,7 +123,7 @@ MAX_PARALLEL_INSERT=2
|
|||
|
||||
###########################################################
|
||||
### LLM Configuration
|
||||
### LLM_BINDING type: openai, ollama, lollms, azure_openai
|
||||
### LLM_BINDING type: openai, ollama, lollms, azure_openai, aws_bedrock
|
||||
###########################################################
|
||||
### LLM temperature setting for all llm binding (openai, azure_openai, ollama)
|
||||
# TEMPERATURE=1.0
|
||||
|
|
|
|||
|
|
@ -40,6 +40,7 @@ LightRAG 需要同时集成 LLM(大型语言模型)和嵌入模型以有效
|
|||
* lollms
|
||||
* openai 或 openai 兼容
|
||||
* azure_openai
|
||||
* aws_bedrock
|
||||
|
||||
建议使用环境变量来配置 LightRAG 服务器。项目根目录中有一个名为 `env.example` 的示例环境变量文件。请将此文件复制到启动目录并重命名为 `.env`。之后,您可以在 `.env` 文件中修改与 LLM 和嵌入模型相关的参数。需要注意的是,LightRAG 服务器每次启动时都会将 `.env` 中的环境变量加载到系统环境变量中。**LightRAG 服务器会优先使用系统环境变量中的设置**。
|
||||
|
||||
|
|
@ -359,6 +360,7 @@ LightRAG 支持绑定到各种 LLM/嵌入后端:
|
|||
* openai 和 openai 兼容
|
||||
* azure_openai
|
||||
* lollms
|
||||
* aws_bedrock
|
||||
|
||||
使用环境变量 `LLM_BINDING` 或 CLI 参数 `--llm-binding` 选择 LLM 后端类型。使用环境变量 `EMBEDDING_BINDING` 或 CLI 参数 `--embedding-binding` 选择嵌入后端类型。
|
||||
|
||||
|
|
|
|||
|
|
@ -40,6 +40,7 @@ LightRAG necessitates the integration of both an LLM (Large Language Model) and
|
|||
* lollms
|
||||
* openai or openai compatible
|
||||
* azure_openai
|
||||
* aws_bedrock
|
||||
|
||||
It is recommended to use environment variables to configure the LightRAG Server. There is an example environment variable file named `env.example` in the root directory of the project. Please copy this file to the startup directory and rename it to `.env`. After that, you can modify the parameters related to the LLM and Embedding models in the `.env` file. It is important to note that the LightRAG Server will load the environment variables from `.env` into the system environment variables each time it starts. **LightRAG Server will prioritize the settings in the system environment variables to .env file**.
|
||||
|
||||
|
|
@ -362,6 +363,7 @@ LightRAG supports binding to various LLM/Embedding backends:
|
|||
* openai & openai compatible
|
||||
* azure_openai
|
||||
* lollms
|
||||
* aws_bedrock
|
||||
|
||||
Use environment variables `LLM_BINDING` or CLI argument `--llm-binding` to select the LLM backend type. Use environment variables `EMBEDDING_BINDING` or CLI argument `--embedding-binding` to select the Embedding backend type.
|
||||
|
||||
|
|
@ -461,8 +463,8 @@ You cannot change storage implementation selection after adding documents to Lig
|
|||
| --ssl-keyfile | None | Path to SSL private key file (required if --ssl is enabled) |
|
||||
| --top-k | 50 | Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode. |
|
||||
| --cosine-threshold | 0.4 | The cosine threshold for nodes and relation retrieval, works with top-k to control the retrieval of nodes and relations. |
|
||||
| --llm-binding | ollama | LLM binding type (lollms, ollama, openai, openai-ollama, azure_openai) |
|
||||
| --embedding-binding | ollama | Embedding binding type (lollms, ollama, openai, azure_openai) |
|
||||
| --llm-binding | ollama | LLM binding type (lollms, ollama, openai, openai-ollama, azure_openai, aws_bedrock) |
|
||||
| --embedding-binding | ollama | Embedding binding type (lollms, ollama, openai, azure_openai, aws_bedrock) |
|
||||
| --auto-scan-at-startup| - | Scan input directory for new files and start indexing |
|
||||
|
||||
### Additional Ollama Binding Options
|
||||
|
|
|
|||
|
|
@ -209,14 +209,21 @@ def parse_args() -> argparse.Namespace:
|
|||
"--llm-binding",
|
||||
type=str,
|
||||
default=get_env_value("LLM_BINDING", "ollama"),
|
||||
choices=["lollms", "ollama", "openai", "openai-ollama", "azure_openai"],
|
||||
choices=[
|
||||
"lollms",
|
||||
"ollama",
|
||||
"openai",
|
||||
"openai-ollama",
|
||||
"azure_openai",
|
||||
"aws_bedrock",
|
||||
],
|
||||
help="LLM binding type (default: from env or ollama)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-binding",
|
||||
type=str,
|
||||
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
||||
choices=["lollms", "ollama", "openai", "azure_openai"],
|
||||
choices=["lollms", "ollama", "openai", "azure_openai", "aws_bedrock", "jina"],
|
||||
help="Embedding binding type (default: from env or ollama)",
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -104,8 +104,8 @@ def create_app(args):
|
|||
"lollms",
|
||||
"ollama",
|
||||
"openai",
|
||||
"openai-ollama",
|
||||
"azure_openai",
|
||||
"aws_bedrock",
|
||||
]:
|
||||
raise Exception("llm binding not supported")
|
||||
|
||||
|
|
@ -114,6 +114,7 @@ def create_app(args):
|
|||
"ollama",
|
||||
"openai",
|
||||
"azure_openai",
|
||||
"aws_bedrock",
|
||||
"jina",
|
||||
]:
|
||||
raise Exception("embedding binding not supported")
|
||||
|
|
@ -188,10 +189,12 @@ def create_app(args):
|
|||
# Initialize FastAPI
|
||||
app_kwargs = {
|
||||
"title": "LightRAG Server API",
|
||||
"description": "Providing API for LightRAG core, Web UI and Ollama Model Emulation"
|
||||
+ "(With authentication)"
|
||||
if api_key
|
||||
else "",
|
||||
"description": (
|
||||
"Providing API for LightRAG core, Web UI and Ollama Model Emulation"
|
||||
+ "(With authentication)"
|
||||
if api_key
|
||||
else ""
|
||||
),
|
||||
"version": __api_version__,
|
||||
"openapi_url": "/openapi.json", # Explicitly set OpenAPI schema URL
|
||||
"docs_url": "/docs", # Explicitly set docs URL
|
||||
|
|
@ -244,9 +247,9 @@ def create_app(args):
|
|||
azure_openai_complete_if_cache,
|
||||
azure_openai_embed,
|
||||
)
|
||||
if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama":
|
||||
from lightrag.llm.openai import openai_complete_if_cache
|
||||
from lightrag.llm.ollama import ollama_embed
|
||||
if args.llm_binding == "aws_bedrock" or args.embedding_binding == "aws_bedrock":
|
||||
from lightrag.llm.bedrock import bedrock_complete_if_cache, bedrock_embed
|
||||
if args.embedding_binding == "ollama":
|
||||
from lightrag.llm.binding_options import OllamaEmbeddingOptions
|
||||
if args.embedding_binding == "jina":
|
||||
from lightrag.llm.jina import jina_embed
|
||||
|
|
@ -312,41 +315,80 @@ def create_app(args):
|
|||
**kwargs,
|
||||
)
|
||||
|
||||
async def bedrock_model_complete(
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=None,
|
||||
keyword_extraction=False,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
|
||||
# Use global temperature for Bedrock
|
||||
kwargs["temperature"] = args.temperature
|
||||
|
||||
return await bedrock_complete_if_cache(
|
||||
args.llm_model,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
embedding_func = EmbeddingFunc(
|
||||
embedding_dim=args.embedding_dim,
|
||||
func=lambda texts: lollms_embed(
|
||||
texts,
|
||||
embed_model=args.embedding_model,
|
||||
host=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "lollms"
|
||||
else ollama_embed(
|
||||
texts,
|
||||
embed_model=args.embedding_model,
|
||||
host=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
options=OllamaEmbeddingOptions.options_dict(args),
|
||||
)
|
||||
if args.embedding_binding == "ollama"
|
||||
else azure_openai_embed(
|
||||
texts,
|
||||
model=args.embedding_model, # no host is used for openai,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "azure_openai"
|
||||
else jina_embed(
|
||||
texts,
|
||||
dimensions=args.embedding_dim,
|
||||
base_url=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "jina"
|
||||
else openai_embed(
|
||||
texts,
|
||||
model=args.embedding_model,
|
||||
base_url=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
func=lambda texts: (
|
||||
lollms_embed(
|
||||
texts,
|
||||
embed_model=args.embedding_model,
|
||||
host=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "lollms"
|
||||
else (
|
||||
ollama_embed(
|
||||
texts,
|
||||
embed_model=args.embedding_model,
|
||||
host=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
options=OllamaEmbeddingOptions.options_dict(args),
|
||||
)
|
||||
if args.embedding_binding == "ollama"
|
||||
else (
|
||||
azure_openai_embed(
|
||||
texts,
|
||||
model=args.embedding_model, # no host is used for openai,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "azure_openai"
|
||||
else (
|
||||
bedrock_embed(
|
||||
texts,
|
||||
model=args.embedding_model,
|
||||
)
|
||||
if args.embedding_binding == "aws_bedrock"
|
||||
else (
|
||||
jina_embed(
|
||||
texts,
|
||||
dimensions=args.embedding_dim,
|
||||
base_url=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
if args.embedding_binding == "jina"
|
||||
else openai_embed(
|
||||
texts,
|
||||
model=args.embedding_model,
|
||||
base_url=args.embedding_binding_host,
|
||||
api_key=args.embedding_binding_api_key,
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
|
|
@ -386,28 +428,36 @@ def create_app(args):
|
|||
)
|
||||
|
||||
# Initialize RAG
|
||||
if args.llm_binding in ["lollms", "ollama", "openai"]:
|
||||
if args.llm_binding in ["lollms", "ollama", "openai", "aws_bedrock"]:
|
||||
rag = LightRAG(
|
||||
working_dir=args.working_dir,
|
||||
workspace=args.workspace,
|
||||
llm_model_func=lollms_model_complete
|
||||
if args.llm_binding == "lollms"
|
||||
else ollama_model_complete
|
||||
if args.llm_binding == "ollama"
|
||||
else openai_alike_model_complete,
|
||||
llm_model_func=(
|
||||
lollms_model_complete
|
||||
if args.llm_binding == "lollms"
|
||||
else (
|
||||
ollama_model_complete
|
||||
if args.llm_binding == "ollama"
|
||||
else bedrock_model_complete
|
||||
if args.llm_binding == "aws_bedrock"
|
||||
else openai_alike_model_complete
|
||||
)
|
||||
),
|
||||
llm_model_name=args.llm_model,
|
||||
llm_model_max_async=args.max_async,
|
||||
summary_max_tokens=args.max_tokens,
|
||||
chunk_token_size=int(args.chunk_size),
|
||||
chunk_overlap_token_size=int(args.chunk_overlap_size),
|
||||
llm_model_kwargs={
|
||||
"host": args.llm_binding_host,
|
||||
"timeout": args.timeout,
|
||||
"options": OllamaLLMOptions.options_dict(args),
|
||||
"api_key": args.llm_binding_api_key,
|
||||
}
|
||||
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
|
||||
else {},
|
||||
llm_model_kwargs=(
|
||||
{
|
||||
"host": args.llm_binding_host,
|
||||
"timeout": args.timeout,
|
||||
"options": OllamaLLMOptions.options_dict(args),
|
||||
"api_key": args.llm_binding_api_key,
|
||||
}
|
||||
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
|
||||
else {}
|
||||
),
|
||||
embedding_func=embedding_func,
|
||||
kv_storage=args.kv_storage,
|
||||
graph_storage=args.graph_storage,
|
||||
|
|
|
|||
|
|
@ -15,11 +15,25 @@ from tenacity import (
|
|||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
import sys
|
||||
|
||||
if sys.version_info < (3, 9):
|
||||
from typing import AsyncIterator
|
||||
else:
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Union
|
||||
|
||||
|
||||
class BedrockError(Exception):
|
||||
"""Generic error for issues related to Amazon Bedrock"""
|
||||
|
||||
|
||||
def _set_env_if_present(key: str, value):
|
||||
"""Set environment variable only if a non-empty value is provided."""
|
||||
if value is not None and value != "":
|
||||
os.environ[key] = value
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(5),
|
||||
wait=wait_exponential(multiplier=1, max=60),
|
||||
|
|
@ -34,17 +48,35 @@ async def bedrock_complete_if_cache(
|
|||
aws_secret_access_key=None,
|
||||
aws_session_token=None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
||||
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
||||
)
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
||||
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
||||
)
|
||||
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
||||
"AWS_SESSION_TOKEN", aws_session_token
|
||||
)
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
# Respect existing env; only set if a non-empty value is available
|
||||
access_key = os.environ.get("AWS_ACCESS_KEY_ID") or aws_access_key_id
|
||||
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY") or aws_secret_access_key
|
||||
session_token = os.environ.get("AWS_SESSION_TOKEN") or aws_session_token
|
||||
_set_env_if_present("AWS_ACCESS_KEY_ID", access_key)
|
||||
_set_env_if_present("AWS_SECRET_ACCESS_KEY", secret_key)
|
||||
_set_env_if_present("AWS_SESSION_TOKEN", session_token)
|
||||
# Region handling: prefer env, else kwarg (optional)
|
||||
region = os.environ.get("AWS_REGION") or kwargs.pop("aws_region", None)
|
||||
kwargs.pop("hashing_kv", None)
|
||||
# Capture stream flag (if provided) and remove from kwargs since it's not a Bedrock API parameter
|
||||
# We'll use this to determine whether to call converse_stream or converse
|
||||
stream = bool(kwargs.pop("stream", False))
|
||||
# Remove unsupported args for Bedrock Converse API
|
||||
for k in [
|
||||
"response_format",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"seed",
|
||||
"presence_penalty",
|
||||
"frequency_penalty",
|
||||
"n",
|
||||
"logprobs",
|
||||
"top_logprobs",
|
||||
"max_completion_tokens",
|
||||
"response_format",
|
||||
]:
|
||||
kwargs.pop(k, None)
|
||||
# Fix message history format
|
||||
messages = []
|
||||
for history_message in history_messages:
|
||||
|
|
@ -77,21 +109,131 @@ async def bedrock_complete_if_cache(
|
|||
kwargs.pop(param)
|
||||
)
|
||||
|
||||
# Call model via Converse API
|
||||
session = aioboto3.Session()
|
||||
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||
try:
|
||||
response = await bedrock_async_client.converse(**args, **kwargs)
|
||||
except Exception as e:
|
||||
raise BedrockError(e)
|
||||
# Import logging for error handling
|
||||
import logging
|
||||
|
||||
return response["output"]["message"]["content"][0]["text"]
|
||||
# For streaming responses, we need a different approach to keep the connection open
|
||||
if stream:
|
||||
# Create a session that will be used throughout the streaming process
|
||||
session = aioboto3.Session()
|
||||
client = None
|
||||
|
||||
# Define the generator function that will manage the client lifecycle
|
||||
async def stream_generator():
|
||||
nonlocal client
|
||||
|
||||
# Create the client outside the generator to ensure it stays open
|
||||
client = await session.client(
|
||||
"bedrock-runtime", region_name=region
|
||||
).__aenter__()
|
||||
event_stream = None
|
||||
iteration_started = False
|
||||
|
||||
try:
|
||||
# Make the API call
|
||||
response = await client.converse_stream(**args, **kwargs)
|
||||
event_stream = response.get("stream")
|
||||
iteration_started = True
|
||||
|
||||
# Process the stream
|
||||
async for event in event_stream:
|
||||
# Validate event structure
|
||||
if not event or not isinstance(event, dict):
|
||||
continue
|
||||
|
||||
if "contentBlockDelta" in event:
|
||||
delta = event["contentBlockDelta"].get("delta", {})
|
||||
text = delta.get("text")
|
||||
if text:
|
||||
yield text
|
||||
# Handle other event types that might indicate stream end
|
||||
elif "messageStop" in event:
|
||||
break
|
||||
|
||||
except Exception as e:
|
||||
# Log the specific error for debugging
|
||||
logging.error(f"Bedrock streaming error: {e}")
|
||||
|
||||
# Try to clean up resources if possible
|
||||
if (
|
||||
iteration_started
|
||||
and event_stream
|
||||
and hasattr(event_stream, "aclose")
|
||||
and callable(getattr(event_stream, "aclose", None))
|
||||
):
|
||||
try:
|
||||
await event_stream.aclose()
|
||||
except Exception as close_error:
|
||||
logging.warning(
|
||||
f"Failed to close Bedrock event stream: {close_error}"
|
||||
)
|
||||
|
||||
raise BedrockError(f"Streaming error: {e}")
|
||||
|
||||
finally:
|
||||
# Clean up the event stream
|
||||
if (
|
||||
iteration_started
|
||||
and event_stream
|
||||
and hasattr(event_stream, "aclose")
|
||||
and callable(getattr(event_stream, "aclose", None))
|
||||
):
|
||||
try:
|
||||
await event_stream.aclose()
|
||||
except Exception as close_error:
|
||||
logging.warning(
|
||||
f"Failed to close Bedrock event stream in finally block: {close_error}"
|
||||
)
|
||||
|
||||
# Clean up the client
|
||||
if client:
|
||||
try:
|
||||
await client.__aexit__(None, None, None)
|
||||
except Exception as client_close_error:
|
||||
logging.warning(
|
||||
f"Failed to close Bedrock client: {client_close_error}"
|
||||
)
|
||||
|
||||
# Return the generator that manages its own lifecycle
|
||||
return stream_generator()
|
||||
|
||||
# For non-streaming responses, use the standard async context manager pattern
|
||||
session = aioboto3.Session()
|
||||
async with session.client(
|
||||
"bedrock-runtime", region_name=region
|
||||
) as bedrock_async_client:
|
||||
try:
|
||||
# Use converse for non-streaming responses
|
||||
response = await bedrock_async_client.converse(**args, **kwargs)
|
||||
|
||||
# Validate response structure
|
||||
if (
|
||||
not response
|
||||
or "output" not in response
|
||||
or "message" not in response["output"]
|
||||
or "content" not in response["output"]["message"]
|
||||
or not response["output"]["message"]["content"]
|
||||
):
|
||||
raise BedrockError("Invalid response structure from Bedrock API")
|
||||
|
||||
content = response["output"]["message"]["content"][0]["text"]
|
||||
|
||||
if not content or content.strip() == "":
|
||||
raise BedrockError("Received empty content from Bedrock API")
|
||||
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
if isinstance(e, BedrockError):
|
||||
raise
|
||||
else:
|
||||
raise BedrockError(f"Bedrock API error: {e}")
|
||||
|
||||
|
||||
# Generic Bedrock completion function
|
||||
async def bedrock_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
result = await bedrock_complete_if_cache(
|
||||
|
|
@ -117,18 +259,21 @@ async def bedrock_embed(
|
|||
aws_secret_access_key=None,
|
||||
aws_session_token=None,
|
||||
) -> np.ndarray:
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
||||
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
||||
)
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
||||
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
||||
)
|
||||
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
||||
"AWS_SESSION_TOKEN", aws_session_token
|
||||
)
|
||||
# Respect existing env; only set if a non-empty value is available
|
||||
access_key = os.environ.get("AWS_ACCESS_KEY_ID") or aws_access_key_id
|
||||
secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY") or aws_secret_access_key
|
||||
session_token = os.environ.get("AWS_SESSION_TOKEN") or aws_session_token
|
||||
_set_env_if_present("AWS_ACCESS_KEY_ID", access_key)
|
||||
_set_env_if_present("AWS_SECRET_ACCESS_KEY", secret_key)
|
||||
_set_env_if_present("AWS_SESSION_TOKEN", session_token)
|
||||
|
||||
# Region handling: prefer env
|
||||
region = os.environ.get("AWS_REGION")
|
||||
|
||||
session = aioboto3.Session()
|
||||
async with session.client("bedrock-runtime") as bedrock_async_client:
|
||||
async with session.client(
|
||||
"bedrock-runtime", region_name=region
|
||||
) as bedrock_async_client:
|
||||
if (model_provider := model.split(".")[0]) == "amazon":
|
||||
embed_texts = []
|
||||
for text in texts:
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue