feat(postgres_impl): add vchordrq vector index support and unify vector index creation logic
(cherry picked from commit d07023c962)
This commit is contained in:
parent
1cbe0ba885
commit
3954bb6579
3 changed files with 16 additions and 33 deletions
|
|
@ -28,10 +28,13 @@ password = your_password
|
|||
database = your_database
|
||||
# workspace = default
|
||||
max_connections = 12
|
||||
vector_index_type = HNSW # HNSW or IVFFLAT
|
||||
vector_index_type = HNSW # HNSW, IVFFLAT or VCHORDRQ
|
||||
hnsw_m = 16
|
||||
hnsw_ef = 64
|
||||
ivfflat_lists = 100
|
||||
vchordrq_build_options =
|
||||
vchordrq_probes =
|
||||
vchordrq_epsilon = 1.9
|
||||
|
||||
[memgraph]
|
||||
uri = bolt://localhost:7687
|
||||
|
|
|
|||
|
|
@ -305,11 +305,14 @@ POSTGRES_MAX_CONNECTIONS=12
|
|||
# POSTGRES_WORKSPACE=forced_workspace_name
|
||||
|
||||
### PostgreSQL Vector Storage Configuration
|
||||
### Vector storage type: HNSW, IVFFlat
|
||||
### Vector storage type: HNSW, IVFFlat, VCHORDRQ
|
||||
POSTGRES_VECTOR_INDEX_TYPE=HNSW
|
||||
POSTGRES_HNSW_M=16
|
||||
POSTGRES_HNSW_EF=200
|
||||
POSTGRES_IVFFLAT_LISTS=100
|
||||
POSTGRES_VCHORDRQ_BUILD_OPTIONS=
|
||||
POSTGRES_VCHORDRQ_PROBES=
|
||||
POSTGRES_VCHORDRQ_EPSILON=1.9
|
||||
|
||||
### PostgreSQL Connection Retry Configuration (Network Robustness)
|
||||
### Number of retry attempts (1-10, default: 3)
|
||||
|
|
|
|||
|
|
@ -413,27 +413,12 @@ class PostgreSQLDB:
|
|||
pass
|
||||
|
||||
async def configure_vchordrq(self, connection: asyncpg.Connection) -> None:
|
||||
"""Configure VCHORDRQ extension for vector similarity search.
|
||||
|
||||
Raises:
|
||||
asyncpg.exceptions.UndefinedObjectError: If VCHORDRQ extension is not installed
|
||||
asyncpg.exceptions.InvalidParameterValueError: If parameter value is invalid
|
||||
|
||||
Note:
|
||||
This method does not catch exceptions. Configuration errors will fail-fast,
|
||||
while transient connection errors will be retried by _run_with_retry.
|
||||
"""
|
||||
# Handle probes parameter - only set if non-empty value is provided
|
||||
if self.vchordrq_probes and str(self.vchordrq_probes).strip():
|
||||
"""Configure VCHORDRQ extension for vector similarity search."""
|
||||
try:
|
||||
await connection.execute(f"SET vchordrq.probes TO '{self.vchordrq_probes}'")
|
||||
logger.debug(f"PostgreSQL, VCHORDRQ probes set to: {self.vchordrq_probes}")
|
||||
|
||||
# Handle epsilon parameter independently - check for None to allow 0.0 as valid value
|
||||
if self.vchordrq_epsilon is not None:
|
||||
await connection.execute(f"SET vchordrq.epsilon TO {self.vchordrq_epsilon}")
|
||||
logger.debug(
|
||||
f"PostgreSQL, VCHORDRQ epsilon set to: {self.vchordrq_epsilon}"
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
async def _migrate_llm_cache_schema(self):
|
||||
"""Migrate LLM cache schema: add new columns and remove deprecated mode field"""
|
||||
|
|
@ -1403,14 +1388,12 @@ class PostgreSQLDB:
|
|||
CREATE INDEX {{vector_index_name}}
|
||||
ON {{k}} USING vchordrq (content_vector vector_cosine_ops)
|
||||
{f'WITH (options = $${self.vchordrq_build_options}$$)' if self.vchordrq_build_options else ''}
|
||||
""",
|
||||
"""
|
||||
}
|
||||
|
||||
embedding_dim = int(os.environ.get("EMBEDDING_DIM", 1024))
|
||||
for k in vdb_tables:
|
||||
vector_index_name = (
|
||||
f"idx_{k.lower()}_{self.vector_index_type.lower()}_cosine"
|
||||
)
|
||||
vector_index_name = f"idx_{k.lower()}_{self.vector_index_type.lower()}_cosine"
|
||||
check_vector_index_sql = f"""
|
||||
SELECT 1 FROM pg_indexes
|
||||
WHERE indexname = '{vector_index_name}' AND tablename = '{k.lower()}'
|
||||
|
|
@ -1422,14 +1405,8 @@ class PostgreSQLDB:
|
|||
alter_sql = f"ALTER TABLE {k} ALTER COLUMN content_vector TYPE VECTOR({embedding_dim})"
|
||||
await self.execute(alter_sql)
|
||||
logger.debug(f"Ensured vector dimension for {k}")
|
||||
logger.info(
|
||||
f"Creating {self.vector_index_type} index {vector_index_name} on table {k}"
|
||||
)
|
||||
await self.execute(
|
||||
create_sql[self.vector_index_type].format(
|
||||
vector_index_name=vector_index_name, k=k
|
||||
)
|
||||
)
|
||||
logger.info(f"Creating {self.vector_index_type} index {vector_index_name} on table {k}")
|
||||
await self.execute(create_sql[self.vector_index_type].format(vector_index_name=vector_index_name, k=k))
|
||||
logger.info(
|
||||
f"Successfully created vector index {vector_index_name} on table {k}"
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue