Improve LightRAG initialization checker tool with better usage docs

• Add workspace param to get_namespace_data
• Update docstring with proper usage example
• Simplify demo to show correct workflow
• Remove confusing before/after comparison
• Clarify tool should run after init
This commit is contained in:
yangdx 2025-11-17 15:42:54 +08:00
parent 9d7b7981ce
commit 393f880311

View file

@ -3,10 +3,17 @@
Diagnostic tool to check LightRAG initialization status.
This tool helps developers verify that their LightRAG instance is properly
initialized before use, preventing common initialization errors.
initialized and ready to use. It should be called AFTER initialize_storages()
to validate that all components are correctly set up.
Usage:
python -m lightrag.tools.check_initialization
# Basic usage in your code:
rag = LightRAG(...)
await rag.initialize_storages()
await check_lightrag_setup(rag, verbose=True)
# Run demo from command line:
python -m lightrag.tools.check_initialization --demo
"""
import asyncio
@ -82,7 +89,7 @@ async def check_lightrag_setup(rag_instance: LightRAG, verbose: bool = False) ->
try:
from lightrag.kg.shared_storage import get_namespace_data
get_namespace_data("pipeline_status")
get_namespace_data("pipeline_status", workspace=rag_instance.workspace)
print("✅ Pipeline status: INITIALIZED")
except KeyError:
issues.append(
@ -137,13 +144,10 @@ async def demo():
llm_model_func=gpt_4o_mini_complete,
)
print("\n🔴 BEFORE initialization:\n")
await check_lightrag_setup(rag, verbose=True)
print("\n" + "=" * 50)
print("\n🔄 Initializing...\n")
print("\n🔄 Initializing storages...\n")
await rag.initialize_storages() # Auto-initializes pipeline_status
print("\n🟢 AFTER initialization:\n")
print("\n🔍 Checking initialization status:\n")
await check_lightrag_setup(rag, verbose=True)
# Cleanup