diff --git a/lightrag/llm/azure_openai.py b/lightrag/llm/azure_openai.py
index cb8d68df..c67bae10 100644
--- a/lightrag/llm/azure_openai.py
+++ b/lightrag/llm/azure_openai.py
@@ -90,7 +90,7 @@ async def azure_openai_complete_if_cache(
messages.append({"role": "user", "content": prompt})
if "response_format" in kwargs:
- response = await openai_async_client.chat.completions.parse(
+ response = await openai_async_client.beta.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
@@ -114,7 +114,7 @@ async def azure_openai_complete_if_cache(
return inner()
else:
message = response.choices[0].message
-
+
# Handle parsed responses (structured output via response_format)
# When using beta.chat.completions.parse(), the response is in message.parsed
if hasattr(message, "parsed") and message.parsed is not None:
@@ -126,7 +126,7 @@ async def azure_openai_complete_if_cache(
content = message.content
if content and r"\u" in content:
content = safe_unicode_decode(content.encode("utf-8"))
-
+
return content
diff --git a/lightrag/llm/openai.py b/lightrag/llm/openai.py
index 8e265d2c..cea85b04 100644
--- a/lightrag/llm/openai.py
+++ b/lightrag/llm/openai.py
@@ -77,86 +77,46 @@ class InvalidResponseError(Exception):
def create_openai_async_client(
api_key: str | None = None,
base_url: str | None = None,
- use_azure: bool = False,
- azure_deployment: str | None = None,
- api_version: str | None = None,
- timeout: int | None = None,
client_configs: dict[str, Any] | None = None,
) -> AsyncOpenAI:
- """Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration.
+ """Create an AsyncOpenAI client with the given configuration.
Args:
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
- use_azure: Whether to create an Azure OpenAI client. Default is False.
- azure_deployment: Azure OpenAI deployment name (only used when use_azure=True).
- api_version: Azure OpenAI API version (only used when use_azure=True).
- timeout: Request timeout in seconds.
client_configs: Additional configuration options for the AsyncOpenAI client.
These will override any default configurations but will be overridden by
explicit parameters (api_key, base_url).
Returns:
- An AsyncOpenAI or AsyncAzureOpenAI client instance.
+ An AsyncOpenAI client instance.
"""
- if use_azure:
- from openai import AsyncAzureOpenAI
+ if not api_key:
+ api_key = os.environ["OPENAI_API_KEY"]
- if not api_key:
- api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get(
- "LLM_BINDING_API_KEY"
- )
+ default_headers = {
+ "User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
+ "Content-Type": "application/json",
+ }
- if client_configs is None:
- client_configs = {}
+ if client_configs is None:
+ client_configs = {}
- # Create a merged config dict with precedence: explicit params > client_configs
- merged_configs = {
- **client_configs,
- "api_key": api_key,
- }
+ # Create a merged config dict with precedence: explicit params > client_configs > defaults
+ merged_configs = {
+ **client_configs,
+ "default_headers": default_headers,
+ "api_key": api_key,
+ }
- # Add explicit parameters (override client_configs)
- if base_url is not None:
- merged_configs["azure_endpoint"] = base_url
- if azure_deployment is not None:
- merged_configs["azure_deployment"] = azure_deployment
- if api_version is not None:
- merged_configs["api_version"] = api_version
- if timeout is not None:
- merged_configs["timeout"] = timeout
-
- return AsyncAzureOpenAI(**merged_configs)
+ if base_url is not None:
+ merged_configs["base_url"] = base_url
else:
- if not api_key:
- api_key = os.environ["OPENAI_API_KEY"]
+ merged_configs["base_url"] = os.environ.get(
+ "OPENAI_API_BASE", "https://api.openai.com/v1"
+ )
- default_headers = {
- "User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
- "Content-Type": "application/json",
- }
-
- if client_configs is None:
- client_configs = {}
-
- # Create a merged config dict with precedence: explicit params > client_configs > defaults
- merged_configs = {
- **client_configs,
- "default_headers": default_headers,
- "api_key": api_key,
- }
-
- if base_url is not None:
- merged_configs["base_url"] = base_url
- else:
- merged_configs["base_url"] = os.environ.get(
- "OPENAI_API_BASE", "https://api.openai.com/v1"
- )
-
- if timeout is not None:
- merged_configs["timeout"] = timeout
-
- return AsyncOpenAI(**merged_configs)
+ return AsyncOpenAI(**merged_configs)
@retry(
@@ -181,9 +141,6 @@ async def openai_complete_if_cache(
stream: bool | None = None,
timeout: int | None = None,
keyword_extraction: bool = False,
- use_azure: bool = False,
- azure_deployment: str | None = None,
- api_version: str | None = None,
**kwargs: Any,
) -> str:
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
@@ -250,14 +207,10 @@ async def openai_complete_if_cache(
if keyword_extraction:
kwargs["response_format"] = GPTKeywordExtractionFormat
- # Create the OpenAI client (supports both OpenAI and Azure)
+ # Create the OpenAI client
openai_async_client = create_openai_async_client(
api_key=api_key,
base_url=base_url,
- use_azure=use_azure,
- azure_deployment=azure_deployment,
- api_version=api_version,
- timeout=timeout,
client_configs=client_configs,
)
@@ -288,7 +241,7 @@ async def openai_complete_if_cache(
try:
# Don't use async with context manager, use client directly
if "response_format" in kwargs:
- response = await openai_async_client.chat.completions.parse(
+ response = await openai_async_client.beta.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
@@ -500,7 +453,7 @@ async def openai_complete_if_cache(
raise InvalidResponseError("Invalid response from OpenAI API")
message = response.choices[0].message
-
+
# Handle parsed responses (structured output via response_format)
# When using beta.chat.completions.parse(), the response is in message.parsed
if hasattr(message, "parsed") and message.parsed is not None:
@@ -539,9 +492,7 @@ async def openai_complete_if_cache(
reasoning_content = safe_unicode_decode(
reasoning_content.encode("utf-8")
)
- final_content = (
- f"{reasoning_content}{final_content}"
- )
+ final_content = f"{reasoning_content}{final_content}"
else:
# COT disabled, only use regular content
final_content = content or ""
@@ -678,9 +629,6 @@ async def openai_embed(
embedding_dim: int | None = None,
client_configs: dict[str, Any] | None = None,
token_tracker: Any | None = None,
- use_azure: bool = False,
- azure_deployment: str | None = None,
- api_version: str | None = None,
) -> np.ndarray:
"""Generate embeddings for a list of texts using OpenAI's API.
@@ -708,14 +656,9 @@ async def openai_embed(
RateLimitError: If the OpenAI API rate limit is exceeded.
APITimeoutError: If the OpenAI API request times out.
"""
- # Create the OpenAI client (supports both OpenAI and Azure)
+ # Create the OpenAI client
openai_async_client = create_openai_async_client(
- api_key=api_key,
- base_url=base_url,
- use_azure=use_azure,
- azure_deployment=azure_deployment,
- api_version=api_version,
- client_configs=client_configs,
+ api_key=api_key, base_url=base_url, client_configs=client_configs
)
async with openai_async_client:
@@ -748,157 +691,3 @@ async def openai_embed(
for dp in response.data
]
)
-
-
-# Azure OpenAI wrapper functions for backward compatibility
-async def azure_openai_complete_if_cache(
- model,
- prompt,
- system_prompt: str | None = None,
- history_messages: list[dict[str, Any]] | None = None,
- enable_cot: bool = False,
- base_url: str | None = None,
- api_key: str | None = None,
- api_version: str | None = None,
- keyword_extraction: bool = False,
- **kwargs,
-):
- """Azure OpenAI completion wrapper function.
-
- This function provides backward compatibility by wrapping the unified
- openai_complete_if_cache implementation with Azure-specific parameter handling.
- """
- # Handle Azure-specific environment variables and parameters
- deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
- base_url = (
- base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
- )
- api_key = (
- api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
- )
- api_version = (
- api_version
- or os.getenv("AZURE_OPENAI_API_VERSION")
- or os.getenv("OPENAI_API_VERSION")
- )
-
- # Pop timeout from kwargs if present (will be handled by openai_complete_if_cache)
- timeout = kwargs.pop("timeout", None)
-
- # Call the unified implementation with Azure-specific parameters
- return await openai_complete_if_cache(
- model=model,
- prompt=prompt,
- system_prompt=system_prompt,
- history_messages=history_messages,
- enable_cot=enable_cot,
- base_url=base_url,
- api_key=api_key,
- timeout=timeout,
- use_azure=True,
- azure_deployment=deployment,
- api_version=api_version,
- keyword_extraction=keyword_extraction,
- **kwargs,
- )
-
-
-async def azure_openai_complete(
- prompt,
- system_prompt=None,
- history_messages=None,
- keyword_extraction=False,
- **kwargs,
-) -> str:
- """Azure OpenAI complete wrapper function.
-
- Provides backward compatibility for azure_openai_complete calls.
- """
- if history_messages is None:
- history_messages = []
- result = await azure_openai_complete_if_cache(
- os.getenv("LLM_MODEL", "gpt-4o-mini"),
- prompt,
- system_prompt=system_prompt,
- history_messages=history_messages,
- keyword_extraction=keyword_extraction,
- **kwargs,
- )
- return result
-
-
-@wrap_embedding_func_with_attrs(embedding_dim=1536)
-async def azure_openai_embed(
- texts: list[str],
- model: str | None = None,
- base_url: str | None = None,
- api_key: str | None = None,
- api_version: str | None = None,
-) -> np.ndarray:
- """Azure OpenAI embedding wrapper function.
-
- This function provides backward compatibility by wrapping the unified
- openai_embed implementation with Azure-specific parameter handling.
-
- IMPORTANT - Decorator Usage:
-
- 1. This function is decorated with @wrap_embedding_func_with_attrs to provide
- the EmbeddingFunc interface for users who need to access embedding_dim
- and other attributes.
-
- 2. This function does NOT use @retry decorator to avoid double-wrapping,
- since the underlying openai_embed.func already has retry logic.
-
- 3. This function calls openai_embed.func (the unwrapped function) instead of
- openai_embed (the EmbeddingFunc instance) to avoid double decoration issues:
-
- ✅ Correct: await openai_embed.func(...) # Calls unwrapped function with retry
- ❌ Wrong: await openai_embed(...) # Would cause double EmbeddingFunc wrapping
-
- Double decoration causes:
- - Double injection of embedding_dim parameter
- - Incorrect parameter passing to the underlying implementation
- - Runtime errors due to parameter conflicts
-
- The call chain with correct implementation:
- azure_openai_embed(texts)
- → EmbeddingFunc.__call__(texts) # azure's decorator
- → azure_openai_embed_impl(texts, embedding_dim=1536)
- → openai_embed.func(texts, ...)
- → @retry_wrapper(texts, ...) # openai's retry (only one layer)
- → openai_embed_impl(texts, ...)
- → actual embedding computation
- """
- # Handle Azure-specific environment variables and parameters
- deployment = (
- os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
- or model
- or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
- )
- base_url = (
- base_url
- or os.getenv("AZURE_EMBEDDING_ENDPOINT")
- or os.getenv("EMBEDDING_BINDING_HOST")
- )
- api_key = (
- api_key
- or os.getenv("AZURE_EMBEDDING_API_KEY")
- or os.getenv("EMBEDDING_BINDING_API_KEY")
- )
- api_version = (
- api_version
- or os.getenv("AZURE_EMBEDDING_API_VERSION")
- or os.getenv("OPENAI_API_VERSION")
- )
-
- # CRITICAL: Call openai_embed.func (unwrapped) to avoid double decoration
- # openai_embed is an EmbeddingFunc instance, .func accesses the underlying function
- return await openai_embed.func(
- texts=texts,
- model=model or deployment,
- base_url=base_url,
- api_key=api_key,
- use_azure=True,
- azure_deployment=deployment,
- api_version=api_version,
- )