Merge 4945faf021 into 9562a974d2
This commit is contained in:
commit
33bde4161a
10 changed files with 3052 additions and 1132 deletions
43
README.md
43
README.md
|
|
@ -292,7 +292,7 @@ A full list of LightRAG init parameters:
|
|||
| **workspace** | str | Workspace name for data isolation between different LightRAG Instances | |
|
||||
| **kv_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`,`PGKVStorage`,`RedisKVStorage`,`MongoKVStorage` | `JsonKVStorage` |
|
||||
| **vector_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`,`PGVectorStorage`,`MilvusVectorDBStorage`,`ChromaVectorDBStorage`,`FaissVectorDBStorage`,`MongoVectorDBStorage`,`QdrantVectorDBStorage` | `NanoVectorDBStorage` |
|
||||
| **graph_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`,`Neo4JStorage`,`PGGraphStorage`,`AGEStorage` | `NetworkXStorage` |
|
||||
| **graph_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`,`Neo4JStorage`,`PGGraphStorage`,`MemgraphStorage`,`TigerGraphStorage` | `NetworkXStorage` |
|
||||
| **doc_status_storage** | `str` | Storage type for documents process status. Supported types: `JsonDocStatusStorage`,`PGDocStatusStorage`,`MongoDocStatusStorage` | `JsonDocStatusStorage` |
|
||||
| **chunk_token_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
|
||||
| **chunk_overlap_token_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
|
||||
|
|
@ -791,7 +791,8 @@ MongoKVStorage MongoDB
|
|||
NetworkXStorage NetworkX (default)
|
||||
Neo4JStorage Neo4J
|
||||
PGGraphStorage PostgreSQL with AGE plugin
|
||||
MemgraphStorage. Memgraph
|
||||
MemgraphStorage Memgraph
|
||||
TigerGraphStorage TigerGraph
|
||||
```
|
||||
|
||||
> Testing has shown that Neo4J delivers superior performance in production environments compared to PostgreSQL with AGE plugin.
|
||||
|
|
@ -936,6 +937,44 @@ async def initialize_rag():
|
|||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary> <b>Using TigerGraph for Storage</b> </summary>
|
||||
|
||||
* TigerGraph is a high-performance, distributed graph database with native GSQL query language.
|
||||
* You can run TigerGraph locally using Docker for easy testing:
|
||||
* See: https://www.tigergraph.com/developer/
|
||||
|
||||
```python
|
||||
export TIGERGRAPH_URI="http://localhost:9000"
|
||||
export TIGERGRAPH_USERNAME="tigergraph"
|
||||
export TIGERGRAPH_PASSWORD="tigergraph"
|
||||
export TIGERGRAPH_GRAPH_NAME="lightrag_graph"
|
||||
|
||||
# Setup logger for LightRAG
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
# When you launch the project, override the default KG: NetworkX
|
||||
# by specifying graph_storage="TigerGraphStorage".
|
||||
|
||||
# Note: Default settings use NetworkX
|
||||
# Initialize LightRAG with TigerGraph implementation.
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="TigerGraphStorage", #<-----------override KG default
|
||||
)
|
||||
|
||||
# Initialize database connections
|
||||
await rag.initialize_storages()
|
||||
# Initialize pipeline status for document processing
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary> <b>Using MongoDB Storage</b> </summary>
|
||||
|
||||
|
|
|
|||
|
|
@ -38,3 +38,9 @@ vchordrq_epsilon = 1.9
|
|||
|
||||
[memgraph]
|
||||
uri = bolt://localhost:7687
|
||||
|
||||
[tigergraph]
|
||||
uri = http://localhost:9000
|
||||
username = tigergraph
|
||||
password = your_password
|
||||
graph_name = lightrag
|
||||
|
|
|
|||
12
env.example
12
env.example
|
|
@ -412,6 +412,11 @@ NEO4J_KEEP_ALIVE=true
|
|||
### DB specific workspace should not be set, keep for compatible only
|
||||
### NEO4J_WORKSPACE=forced_workspace_name
|
||||
|
||||
### Configuration
|
||||
TIGERGRAPH_URI=https://localhost:9000
|
||||
TIGERGRAPH_USERNAME=tigergraph
|
||||
TIGERGRAPH_PASSWORD=tigergraph
|
||||
|
||||
### MongoDB Configuration
|
||||
MONGO_URI=mongodb://root:root@localhost:27017/
|
||||
#MONGO_URI=mongodb+srv://xxxx
|
||||
|
|
@ -461,6 +466,13 @@ MEMGRAPH_DATABASE=memgraph
|
|||
# LANGFUSE_HOST="https://cloud.langfuse.com" # 或您的自托管实例地址
|
||||
# LANGFUSE_ENABLE_TRACE=true
|
||||
|
||||
### TigerGraph Configuration
|
||||
TIGERGRAPH_URI=http://localhost:9000
|
||||
TIGERGRAPH_USERNAME=tigergraph
|
||||
TIGERGRAPH_PASSWORD='your_password'
|
||||
TIGERGRAPH_GRAPH_NAME=lightrag
|
||||
# TIGERGRAPH_WORKSPACE=forced_workspace_name
|
||||
|
||||
############################
|
||||
### Evaluation Configuration
|
||||
############################
|
||||
|
|
|
|||
246
examples/lightrag_tigergraph_demo.py
Normal file
246
examples/lightrag_tigergraph_demo.py
Normal file
|
|
@ -0,0 +1,246 @@
|
|||
import os
|
||||
import asyncio
|
||||
import argparse
|
||||
import logging
|
||||
import logging.config
|
||||
import json
|
||||
from pathlib import Path
|
||||
from lightrag import LightRAG
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
from lightrag.utils import logger, set_verbose_debug
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
def configure_logging():
|
||||
"""Configure logging for the application"""
|
||||
|
||||
# Reset any existing handlers to ensure clean configuration
|
||||
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
|
||||
logger_instance = logging.getLogger(logger_name)
|
||||
logger_instance.handlers = []
|
||||
logger_instance.filters = []
|
||||
|
||||
# Get log directory path from environment variable or use current directory
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(
|
||||
os.path.join(log_dir, "lightrag_tigergraph_demo.log")
|
||||
)
|
||||
|
||||
print(f"\nLightRAG TigerGraph demo log file: {log_file_path}\n")
|
||||
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
|
||||
logging.config.dictConfig(
|
||||
{
|
||||
"version": 1,
|
||||
"disable_existing_loggers": False,
|
||||
"formatters": {
|
||||
"default": {
|
||||
"format": "%(levelname)s: %(message)s",
|
||||
},
|
||||
"detailed": {
|
||||
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
||||
},
|
||||
},
|
||||
"handlers": {
|
||||
"console": {
|
||||
"formatter": "default",
|
||||
"class": "logging.StreamHandler",
|
||||
"stream": "ext://sys.stderr",
|
||||
},
|
||||
"file": {
|
||||
"formatter": "detailed",
|
||||
"class": "logging.handlers.RotatingFileHandler",
|
||||
"filename": log_file_path,
|
||||
"maxBytes": log_max_bytes,
|
||||
"backupCount": log_backup_count,
|
||||
"encoding": "utf-8",
|
||||
},
|
||||
},
|
||||
"loggers": {
|
||||
"lightrag": {
|
||||
"handlers": ["console", "file"],
|
||||
"level": "INFO",
|
||||
"propagate": False,
|
||||
},
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
# Set the logger level to INFO
|
||||
logger.setLevel(logging.INFO)
|
||||
# Enable verbose debug if needed
|
||||
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
|
||||
|
||||
|
||||
def load_json_texts(json_path: str | Path) -> list[str]:
|
||||
"""
|
||||
Load texts from a plain JSON file.
|
||||
|
||||
Expects JSON array format: [{"text": "..."}, {"text": "..."}]
|
||||
|
||||
Args:
|
||||
json_path: Path to JSON file
|
||||
|
||||
Returns:
|
||||
List of text strings extracted from "text" field
|
||||
"""
|
||||
json_path = Path(json_path)
|
||||
|
||||
if not json_path.exists():
|
||||
raise FileNotFoundError(f"JSON file not found: {json_path}")
|
||||
|
||||
with open(json_path, "r", encoding="utf-8") as f:
|
||||
data = json.load(f)
|
||||
|
||||
if not isinstance(data, list):
|
||||
raise ValueError(f"Expected JSON array, got {type(data).__name__}")
|
||||
|
||||
texts = []
|
||||
for item in data:
|
||||
if isinstance(item, dict) and "text" in item:
|
||||
texts.append(item["text"])
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Expected object with 'text' field, got {type(item).__name__}"
|
||||
)
|
||||
|
||||
return texts
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
"""Initialize LightRAG with TigerGraph implementation."""
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
embedding_func=openai_embed, # Use OpenAI embedding function
|
||||
graph_storage="TigerGraphStorage",
|
||||
)
|
||||
|
||||
# Initialize database connections
|
||||
await rag.initialize_storages()
|
||||
# Initialize pipeline status for document processing
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
async def test_ingestion(json_file=None):
|
||||
"""Test document ingestion into TigerGraph"""
|
||||
print("=" * 60)
|
||||
print("Initializing LightRAG with TigerGraph...")
|
||||
print("=" * 60)
|
||||
|
||||
rag = await initialize_rag()
|
||||
print(f"✓ LightRAG initialized: {type(rag)}")
|
||||
|
||||
# Test documents for ingestion
|
||||
test_documents = [
|
||||
"TigerGraph is a graph database platform designed for enterprise-scale graph analytics. It supports distributed graph processing and real-time queries.",
|
||||
"LightRAG is a framework that combines retrieval-augmented generation with knowledge graphs. It uses graph storage backends like TigerGraph, Neo4j, and Memgraph.",
|
||||
"Graph databases store data as nodes and edges, making them ideal for relationship-heavy data. They excel at traversing complex connections between entities.",
|
||||
]
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("Ingesting test documents...")
|
||||
print("=" * 60)
|
||||
|
||||
# Insert documents
|
||||
for i, doc in enumerate(test_documents, 1):
|
||||
print(f"\n[{i}/{len(test_documents)}] Inserting document...")
|
||||
track_id = await rag.ainsert(input=doc, file_paths=f"test_doc_{i}.txt")
|
||||
print(f" ✓ Document inserted with track_id: {track_id}")
|
||||
|
||||
# Test JSON ingestion if JSON file is provided or exists
|
||||
if json_file:
|
||||
json_test_file = Path(json_file)
|
||||
if json_test_file.exists():
|
||||
print("\n" + "=" * 60)
|
||||
print("Ingesting JSON file...")
|
||||
print("=" * 60)
|
||||
|
||||
try:
|
||||
texts = load_json_texts(json_test_file)
|
||||
print(f"✓ Loaded {len(texts)} texts from {json_test_file}")
|
||||
|
||||
for i, text in enumerate(texts, 1):
|
||||
print(f"\n[{i}/{len(texts)}] Inserting from JSON...")
|
||||
track_id = await rag.ainsert(
|
||||
input=text, file_paths=str(json_test_file)
|
||||
)
|
||||
print(f" ✓ Text inserted with track_id: {track_id}")
|
||||
except Exception as e:
|
||||
print(f"✗ Error loading JSON file: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
else:
|
||||
print(
|
||||
f"\nℹ No JSON file found at {json_test_file} (skipping JSON ingestion test)"
|
||||
)
|
||||
print(" Create a test_data.json file with format:")
|
||||
print(' [{"text": "Your text here"}, {"text": "Another text"}]')
|
||||
print(" Or use --json-file parameter to specify a JSON file")
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("Verifying ingestion...")
|
||||
print("=" * 60)
|
||||
|
||||
# Verify by checking graph stats
|
||||
try:
|
||||
# Get all labels (entity IDs) from the graph
|
||||
all_labels = await rag.chunk_entity_relation_graph.get_all_labels()
|
||||
print(f"\n✓ Found {len(all_labels)} entities in the graph")
|
||||
if all_labels:
|
||||
print(f" Sample entities: {all_labels[:5]}")
|
||||
|
||||
# Get all nodes
|
||||
all_nodes = await rag.chunk_entity_relation_graph.get_all_nodes()
|
||||
print(f"✓ Found {len(all_nodes)} nodes in the graph")
|
||||
|
||||
# Get all edges
|
||||
all_edges = await rag.chunk_entity_relation_graph.get_all_edges()
|
||||
print(f"✓ Found {len(all_edges)} edges in the graph")
|
||||
|
||||
# Test a simple query
|
||||
print("\n" + "=" * 60)
|
||||
print("Testing query...")
|
||||
print("=" * 60)
|
||||
response = await rag.aquery("What is TigerGraph?")
|
||||
print("\nQuery: 'What is TigerGraph?'")
|
||||
print(f"Response: {response}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\n✗ Error during verification: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("Ingestion test completed!")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LightRAG TigerGraph demo",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--json-file",
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to JSON file with texts to ingest (format: [{"text": "..."}, ...]). Defaults to test_data.json if not specified.',
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Configure logging before running the main function
|
||||
configure_logging()
|
||||
asyncio.run(test_ingestion(json_file=args.json_file))
|
||||
|
|
@ -15,6 +15,7 @@ STORAGE_IMPLEMENTATIONS = {
|
|||
"PGGraphStorage",
|
||||
"MongoGraphStorage",
|
||||
"MemgraphStorage",
|
||||
"TigerGraphStorage",
|
||||
],
|
||||
"required_methods": ["upsert_node", "upsert_edge"],
|
||||
},
|
||||
|
|
@ -59,6 +60,11 @@ STORAGE_ENV_REQUIREMENTS: dict[str, list[str]] = {
|
|||
"MONGO_DATABASE",
|
||||
],
|
||||
"MemgraphStorage": ["MEMGRAPH_URI"],
|
||||
"TigerGraphStorage": [
|
||||
"TIGERGRAPH_URI",
|
||||
"TIGERGRAPH_USERNAME",
|
||||
"TIGERGRAPH_PASSWORD",
|
||||
],
|
||||
"AGEStorage": [
|
||||
"AGE_POSTGRES_DB",
|
||||
"AGE_POSTGRES_USER",
|
||||
|
|
@ -116,6 +122,7 @@ STORAGES = {
|
|||
"FaissVectorDBStorage": ".kg.faiss_impl",
|
||||
"QdrantVectorDBStorage": ".kg.qdrant_impl",
|
||||
"MemgraphStorage": ".kg.memgraph_impl",
|
||||
"TigerGraphStorage": ".kg.tigergraph_impl",
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
1990
lightrag/kg/tigergraph_impl.py
Normal file
1990
lightrag/kg/tigergraph_impl.py
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -109,6 +109,7 @@ offline-storage = [
|
|||
"pymilvus>=2.6.2,<3.0.0",
|
||||
"pymongo>=4.0.0,<5.0.0",
|
||||
"asyncpg>=0.29.0,<1.0.0",
|
||||
"pyTigerGraph>=1.9.0,<2.0.0",
|
||||
"qdrant-client>=1.11.0,<2.0.0",
|
||||
]
|
||||
|
||||
|
|
|
|||
|
|
@ -12,5 +12,6 @@ asyncpg>=0.29.0,<1.0.0
|
|||
neo4j>=5.0.0,<7.0.0
|
||||
pymilvus>=2.6.2,<3.0.0
|
||||
pymongo>=4.0.0,<5.0.0
|
||||
pyTigerGraph>=1.9.0,<2.0.0
|
||||
qdrant-client>=1.11.0,<2.0.0
|
||||
redis>=5.0.0,<8.0.0
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@ Supported graph storage types include:
|
|||
- MongoDBStorage
|
||||
- PGGraphStorage
|
||||
- MemgraphStorage
|
||||
- TigerGraphStorage
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue