Add optional embedding dimension parameter control via env var

* Add EMBEDDING_SEND_DIM environment variable
* Update Jina/OpenAI embed functions
* Add send_dimensions to EmbeddingFunc
* Auto-inject embedding_dim when enabled
* Add parameter validation warnings
This commit is contained in:
yangdx 2025-11-07 20:46:40 +08:00
parent d94aae9c5e
commit 33a1482f7f
5 changed files with 76 additions and 18 deletions

View file

@ -241,6 +241,13 @@ OLLAMA_LLM_NUM_CTX=32768
### EMBEDDING_BINDING_HOST: host only for Ollama, endpoint for other Embedding service
#######################################################################################
# EMBEDDING_TIMEOUT=30
### Control whether to send embedding_dim parameter to embedding API
### Set to 'true' to enable dynamic dimension adjustment (only works for OpenAI and Jina)
### Set to 'false' (default) to disable sending dimension parameter
### Note: This is automatically ignored for backends that don't support dimension parameter
# EMBEDDING_SEND_DIM=false
EMBEDDING_BINDING=ollama
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024

View file

@ -15,7 +15,6 @@ import logging.config
import sys
import uvicorn
import pipmaster as pm
import inspect
from fastapi.staticfiles import StaticFiles
from fastapi.responses import RedirectResponse
from pathlib import Path
@ -595,7 +594,7 @@ def create_app(args):
return {}
def create_optimized_embedding_function(
config_cache: LLMConfigCache, binding, model, host, api_key, dimensions, args
config_cache: LLMConfigCache, binding, model, host, api_key, args
):
"""
Create optimized embedding function with pre-processed configuration for applicable bindings.
@ -641,7 +640,7 @@ def create_app(args):
from lightrag.llm.jina import jina_embed
return await jina_embed(
texts, dimensions=dimensions, base_url=host, api_key=api_key
texts, base_url=host, api_key=api_key
)
else: # openai and compatible
from lightrag.llm.openai import openai_embed
@ -687,17 +686,43 @@ def create_app(args):
)
# Create embedding function with optimized configuration
embedding_func = EmbeddingFunc(
embedding_dim=args.embedding_dim,
func=create_optimized_embedding_function(
import inspect
# Create the optimized embedding function
optimized_embedding_func = create_optimized_embedding_function(
config_cache=config_cache,
binding=args.embedding_binding,
model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
dimensions=args.embedding_dim,
args=args, # Pass args object for fallback option generation
),
)
# Check environment variable for sending dimensions
embedding_send_dim = os.getenv("EMBEDDING_SEND_DIM", "false").lower() == "true"
# Check if the function signature has embedding_dim parameter
# Note: Since optimized_embedding_func is an async function, inspect its signature
sig = inspect.signature(optimized_embedding_func)
has_embedding_dim_param = 'embedding_dim' in sig.parameters
# Determine send_dimensions value
# Only send dimensions if both conditions are met:
# 1. EMBEDDING_SEND_DIM environment variable is true
# 2. The function has embedding_dim parameter
send_dimensions = embedding_send_dim and has_embedding_dim_param
logger.info(
f"Embedding configuration: send_dimensions={send_dimensions} "
f"(env_var={embedding_send_dim}, has_param={has_embedding_dim_param}, "
f"binding={args.embedding_binding})"
)
# Create EmbeddingFunc with send_dimensions attribute
embedding_func = EmbeddingFunc(
embedding_dim=args.embedding_dim,
func=optimized_embedding_func,
send_dimensions=send_dimensions,
)
# Configure rerank function based on args.rerank_bindingparameter

View file

@ -69,7 +69,7 @@ async def fetch_data(url, headers, data):
)
async def jina_embed(
texts: list[str],
dimensions: int = 2048,
embedding_dim: int = 2048,
late_chunking: bool = False,
base_url: str = None,
api_key: str = None,
@ -78,7 +78,12 @@ async def jina_embed(
Args:
texts: List of texts to embed.
dimensions: The embedding dimensions (default: 2048 for jina-embeddings-v4).
embedding_dim: The embedding dimensions (default: 2048 for jina-embeddings-v4).
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
Do NOT manually pass this parameter when calling the function directly.
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
Manually passing a different value will trigger a warning and be ignored.
When provided (by EmbeddingFunc), it will be passed to the Jina API for dimension reduction.
late_chunking: Whether to use late chunking.
base_url: Optional base URL for the Jina API.
api_key: Optional Jina API key. If None, uses the JINA_API_KEY environment variable.
@ -104,7 +109,7 @@ async def jina_embed(
data = {
"model": "jina-embeddings-v4",
"task": "text-matching",
"dimensions": dimensions,
"dimensions": embedding_dim,
"embedding_type": "base64",
"input": texts,
}
@ -114,7 +119,7 @@ async def jina_embed(
data["late_chunking"] = late_chunking
logger.debug(
f"Jina embedding request: {len(texts)} texts, dimensions: {dimensions}"
f"Jina embedding request: {len(texts)} texts, dimensions: {embedding_dim}"
)
try:

View file

@ -609,7 +609,7 @@ async def openai_embed(
model: str = "text-embedding-3-small",
base_url: str | None = None,
api_key: str | None = None,
embedding_dim: int = None,
embedding_dim: int | None = None,
client_configs: dict[str, Any] | None = None,
token_tracker: Any | None = None,
) -> np.ndarray:
@ -620,7 +620,12 @@ async def openai_embed(
model: The OpenAI embedding model to use.
base_url: Optional base URL for the OpenAI API.
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
embedding_dim: Optional embedding dimension. If None, uses the default embedding dimension for the model. (will be passed to API for dimension reduction).
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
Do NOT manually pass this parameter when calling the function directly.
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
Manually passing a different value will trigger a warning and be ignored.
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
client_configs: Additional configuration options for the AsyncOpenAI client.
These will override any default configurations but will be overridden by
explicit parameters (api_key, base_url).

View file

@ -353,8 +353,24 @@ class EmbeddingFunc:
embedding_dim: int
func: callable
max_token_size: int | None = None # deprecated keep it for compatible only
send_dimensions: bool = False # Control whether to send embedding_dim to the function
async def __call__(self, *args, **kwargs) -> np.ndarray:
# Only inject embedding_dim when send_dimensions is True
if self.send_dimensions:
# Check if user provided embedding_dim parameter
if 'embedding_dim' in kwargs:
user_provided_dim = kwargs['embedding_dim']
# If user's value differs from class attribute, output warning
if user_provided_dim is not None and user_provided_dim != self.embedding_dim:
logger.warning(
f"Ignoring user-provided embedding_dim={user_provided_dim}, "
f"using declared embedding_dim={self.embedding_dim} from decorator"
)
# Inject embedding_dim from decorator
kwargs['embedding_dim'] = self.embedding_dim
return await self.func(*args, **kwargs)