diff --git a/README-zh.md b/README-zh.md index 7d28a550..79710d3a 100644 --- a/README-zh.md +++ b/README-zh.md @@ -881,7 +881,7 @@ rag = LightRAG( 对于生产级场景,您很可能想要利用企业级解决方案。PostgreSQL可以为您提供一站式储解解决方案,作为KV存储、向量数据库(pgvector)和图数据库(apache AGE)。支持 PostgreSQL 版本为16.6或以上。 -* 如果您是初学者并想避免麻烦,推荐使用docker,请从这个镜像开始(请务必阅读概述):https://hub.docker.com/r/shangor/postgres-for-rag +* 如果您是初学者并想避免麻烦,推荐使用docker,请从这个镜像开始(默认帐号密码:rag/rag):https://hub.docker.com/r/gzdaniel/postgres-for-rag * Apache AGE的性能不如Neo4j。追求高性能的图数据库请使用Noe4j。 diff --git a/README.md b/README.md index 3313cdcf..01509e03 100644 --- a/README.md +++ b/README.md @@ -845,7 +845,7 @@ see test_neo4j.py for a working example. For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE). PostgreSQL version 16.6 or higher is supported. * PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac. -* If you prefer docker, please start with this image if you are a beginner to avoid hiccups (DO read the overview): https://hub.docker.com/r/shangor/postgres-for-rag +* If you prefer docker, please start with this image if you are a beginner to avoid hiccups (Default user password:rag/rag): https://hub.docker.com/r/gzdaniel/postgres-for-rag * How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py) * For high-performance graph database requirements, Neo4j is recommended as Apache AGE's performance is not as competitive.