Update README.md

This commit is contained in:
yangdx 2025-07-16 11:10:56 +08:00
parent 2bf0d397ed
commit 1c53c5c764
2 changed files with 41 additions and 9 deletions

View file

@ -135,6 +135,22 @@ pip install lightrag-hku
## 快速开始
### LightRAG的LLM及配套技术栈要求
LightRAG对大型语言模型LLM的能力要求远高于传统RAG因为它需要LLM执行文档中的实体关系抽取任务。配置合适的Embedding和Reranker模型对提高查询表现也至关重要。
- **LLM选型**
- 推荐选用参数量至少为32B的LLM。
- 上下文长度至少为32KB推荐达到64KB。
- **Embedding模型**
- 高性能的Embedding模型对RAG至关重要。
- 推荐使用主流的多语言Embedding模型例如BAAI/bge-m3 和 text-embedding-3-large。
- **重要提示**在文档索引前必须确定使用的Embedding模型且在文档查询阶段必须沿用与索引阶段相同的模型。
- **Reranker模型配置**
- 配置Reranker模型能够显著提升LightRAG的检索效果。
- 启用Reranker模型后推荐将“mix模式”设为默认查询模式。
- 推荐选用主流的Reranker模型例如BAAI/bge-reranker-v2-m3 或 Jina 等服务商提供的模型。
### 使用LightRAG服务器
**有关LightRAG服务器的更多信息请参阅[LightRAG服务器](./lightrag/api/README.md)。**
@ -831,7 +847,7 @@ rag = LightRAG(
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
-- 如有必要可以删除
drop INDEX entity_p_idx;
drop INDEX vertex_p_idx;
@ -1189,17 +1205,17 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import os
async def load_existing_lightrag():
# 首先,创建或加载现有的 LightRAG 实例
lightrag_working_dir = "./existing_lightrag_storage"
# 检查是否存在之前的 LightRAG 实例
if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
print("✅ Found existing LightRAG instance, loading...")
else:
print("❌ No existing LightRAG instance found, will create new one")
# 使用您的配置创建/加载 LightRAG 实例
lightrag_instance = LightRAG(
working_dir=lightrag_working_dir,
@ -1222,10 +1238,10 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
),
)
)
# 初始化存储(如果有现有数据,这将加载现有数据)
await lightrag_instance.initialize_storages()
# 现在使用现有的 LightRAG 实例初始化 RAGAnything
rag = RAGAnything(
lightrag=lightrag_instance, # 传递现有的 LightRAG 实例
@ -1254,20 +1270,20 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
)
# 注意working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
)
# 查询现有的知识库
result = await rag.query_with_multimodal(
"What data has been processed in this LightRAG instance?",
mode="hybrid"
)
print("Query result:", result)
# 向现有的 LightRAG 实例添加新的多模态文档
await rag.process_document_complete(
file_path="path/to/new/multimodal_document.pdf",
output_dir="./output"
)
if __name__ == "__main__":
asyncio.run(load_existing_lightrag())
```

View file

@ -134,6 +134,22 @@ pip install lightrag-hku
## Quick Start
### LLM and Technology Stack Requirements for LightRAG
LightRAG's demands on the capabilities of Large Language Models (LLMs) are significantly higher than those of traditional RAG, as it requires the LLM to perform entity-relationship extraction tasks from documents. Configuring appropriate Embedding and Reranker models is also crucial for improving query performance.
- **LLM Selection**:
- It is recommended to use an LLM with at least 32 billion parameters.
- The context length should be at least 32KB, with 64KB being recommended.
- **Embedding Model**:
- A high-performance Embedding model is essential for RAG.
- We recommend using mainstream multilingual Embedding models, such as: `BAAI/bge-m3` and `text-embedding-3-large`.
- **Important Note**: The Embedding model must be determined before document indexing, and the same model must be used during the document query phase.
- **Reranker Model Configuration**:
- Configuring a Reranker model can significantly enhance LightRAG's retrieval performance.
- When a Reranker model is enabled, it is recommended to set the "mix mode" as the default query mode.
- We recommend using mainstream Reranker models, such as: `BAAI/bge-reranker-v2-m3` or models provided by services like Jina.
### Quick Start for LightRAG Server
* For more information about LightRAG Server, please refer to [LightRAG Server](./lightrag/api/README.md).