diff --git a/env.example b/env.example index be054576..e322e582 100644 --- a/env.example +++ b/env.example @@ -134,7 +134,13 @@ LLM_BINDING_API_KEY=your_api_key # LLM_BINDING_API_KEY=your_api_key # LLM_BINDING=openai -### Most Commont Parameters for Ollama Server +### OpenAI Specific Parameters +### Apply frequency penalty to prevent the LLM from generating repetitive or looping outputs +# OPENAI_LLM_FREQUENCY_PENALTY=1.1 +### use the following command to see all support options for openai and azure_openai +### lightrag-server --llm-binding openai --help + +### Ollama Server Specific Parameters ### Time out in seconds, None for infinite timeout TIMEOUT=240 ### OLLAMA_LLM_NUM_CTX must be larger than MAX_TOTAL_TOKENS + 2000 diff --git a/lightrag/operate.py b/lightrag/operate.py index dd8d54be..7fb150f7 100644 --- a/lightrag/operate.py +++ b/lightrag/operate.py @@ -1747,7 +1747,7 @@ async def kg_query( query_param.user_prompt or "", query_param.enable_rerank, ) - cached_response, quantized, min_val, max_val = await handle_cache( + cached_response = await handle_cache( hashing_kv, args_hash, query, query_param.mode, cache_type="query" ) if cached_response is not None: @@ -1922,18 +1922,10 @@ async def extract_keywords_only( args_hash = compute_args_hash( param.mode, text, - param.response_type, - param.top_k, - param.chunk_top_k, - param.max_entity_tokens, - param.max_relation_tokens, - param.max_total_tokens, param.hl_keywords or [], param.ll_keywords or [], - param.user_prompt or "", - param.enable_rerank, ) - cached_response, quantized, min_val, max_val = await handle_cache( + cached_response = await handle_cache( hashing_kv, args_hash, text, param.mode, cache_type="keywords" ) if cached_response is not None: @@ -3020,7 +3012,7 @@ async def naive_query( query_param.user_prompt or "", query_param.enable_rerank, ) - cached_response, quantized, min_val, max_val = await handle_cache( + cached_response = await handle_cache( hashing_kv, args_hash, query, query_param.mode, cache_type="query" ) if cached_response is not None: diff --git a/lightrag/utils.py b/lightrag/utils.py index 96b7bdc3..bea9962a 100644 --- a/lightrag/utils.py +++ b/lightrag/utils.py @@ -762,27 +762,27 @@ async def handle_cache( prompt, mode="default", cache_type=None, -): +) -> str | None: """Generic cache handling function with flattened cache keys""" if hashing_kv is None: - return None, None, None, None + return None if mode != "default": # handle cache for all type of query if not hashing_kv.global_config.get("enable_llm_cache"): - return None, None, None, None + return None else: # handle cache for entity extraction if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"): - return None, None, None, None + return None # Use flattened cache key format: {mode}:{cache_type}:{hash} flattened_key = generate_cache_key(mode, cache_type, args_hash) cache_entry = await hashing_kv.get_by_id(flattened_key) if cache_entry: logger.debug(f"Flattened cache hit(key:{flattened_key})") - return cache_entry["return"], None, None, None + return cache_entry["return"] logger.debug(f"Cache missed(mode:{mode} type:{cache_type})") - return None, None, None, None + return None @dataclass @@ -1409,7 +1409,7 @@ async def use_llm_func_with_cache( # Generate cache key for this LLM call cache_key = generate_cache_key("default", cache_type, arg_hash) - cached_return, _1, _2, _3 = await handle_cache( + cached_return = await handle_cache( llm_response_cache, arg_hash, _prompt,