Merge pull request #2025 from danielaskdd/remove-ids-filter

refac: Remove deprecated doc-id based filtering from vector storage queries
This commit is contained in:
Daniel.y 2025-08-29 19:39:42 +08:00 committed by GitHub
commit 163ec26e10
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 102 additions and 121 deletions

View file

@ -142,10 +142,6 @@ class QueryParam:
history_turns: int = int(os.getenv("HISTORY_TURNS", str(DEFAULT_HISTORY_TURNS)))
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
# TODO: TODO: Deprecated - ID-based filtering only applies to chunks, not entities or relations, and implemented only in PostgreSQL storage
ids: list[str] | None = None
"""List of doc ids to filter the results."""
model_func: Callable[..., object] | None = None
"""Optional override for the LLM model function to use for this specific query.
If provided, this will be used instead of the global model function.
@ -216,9 +212,16 @@ class BaseVectorStorage(StorageNameSpace, ABC):
@abstractmethod
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
"""Query the vector storage and retrieve top_k results."""
"""Query the vector storage and retrieve top_k results.
Args:
query: The query string to search for
top_k: Number of top results to return
query_embedding: Optional pre-computed embedding for the query.
If provided, skips embedding computation for better performance.
"""
@abstractmethod
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:

View file

@ -180,16 +180,20 @@ class FaissVectorDBStorage(BaseVectorStorage):
return [m["__id__"] for m in list_data]
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
"""
Search by a textual query; returns top_k results with their metadata + similarity distance.
"""
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
# embedding is shape (1, dim)
embedding = np.array(embedding, dtype=np.float32)
if query_embedding is not None:
embedding = np.array([query_embedding], dtype=np.float32)
else:
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
# embedding is shape (1, dim)
embedding = np.array(embedding, dtype=np.float32)
faiss.normalize_L2(embedding) # we do in-place normalization
# Perform the similarity search

View file

@ -1047,14 +1047,18 @@ class MilvusVectorDBStorage(BaseVectorStorage):
return results
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
# Ensure collection is loaded before querying
self._ensure_collection_loaded()
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
# Use provided embedding or compute it
if query_embedding is not None:
embedding = [query_embedding] # Milvus expects a list of embeddings
else:
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
# Include all meta_fields (created_at is now always included)
output_fields = list(self.meta_fields)

View file

@ -1810,16 +1810,22 @@ class MongoVectorDBStorage(BaseVectorStorage):
return list_data
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
"""Queries the vector database using Atlas Vector Search."""
# Generate the embedding
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
# Convert numpy array to a list to ensure compatibility with MongoDB
query_vector = embedding[0].tolist()
if query_embedding is not None:
# Convert numpy array to list if needed for MongoDB compatibility
if hasattr(query_embedding, "tolist"):
query_vector = query_embedding.tolist()
else:
query_vector = list(query_embedding)
else:
# Generate the embedding
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
# Convert numpy array to a list to ensure compatibility with MongoDB
query_vector = embedding[0].tolist()
# Define the aggregation pipeline with the converted query vector
pipeline = [

View file

@ -137,13 +137,17 @@ class NanoVectorDBStorage(BaseVectorStorage):
)
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
# Execute embedding outside of lock to avoid improve cocurrent
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embedding[0]
# Use provided embedding or compute it
if query_embedding is not None:
embedding = query_embedding
else:
# Execute embedding outside of lock to avoid improve cocurrent
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embedding[0]
client = await self._get_client()
results = client.query(

View file

@ -2005,18 +2005,21 @@ class PGVectorStorage(BaseVectorStorage):
#################### query method ###############
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
embeddings = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embeddings[0]
if query_embedding is not None:
embedding = query_embedding
else:
embeddings = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embeddings[0]
embedding_string = ",".join(map(str, embedding))
# Use parameterized document IDs (None means search across all documents)
sql = SQL_TEMPLATES[self.namespace].format(embedding_string=embedding_string)
params = {
"workspace": self.workspace,
"doc_ids": ids,
"closer_than_threshold": 1 - self.cosine_better_than_threshold,
"top_k": top_k,
}
@ -4582,85 +4585,34 @@ SQL_TEMPLATES = {
update_time = EXCLUDED.update_time
""",
"relationships": """
WITH relevant_chunks AS (SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2
:: varchar [] IS NULL OR full_doc_id = ANY ($2:: varchar [])
)
, rc AS (
SELECT array_agg(chunk_id) AS chunk_arr
FROM relevant_chunks
), cand AS (
SELECT
r.id, r.source_id AS src_id, r.target_id AS tgt_id, r.chunk_ids, r.create_time, r.content_vector <=> '[{embedding_string}]'::vector AS dist
SELECT r.source_id AS src_id,
r.target_id AS tgt_id,
EXTRACT(EPOCH FROM r.create_time)::BIGINT AS created_at
FROM LIGHTRAG_VDB_RELATION r
WHERE r.workspace = $1
AND r.content_vector <=> '[{embedding_string}]'::vector < $2
ORDER BY r.content_vector <=> '[{embedding_string}]'::vector
LIMIT ($4 * 50)
)
SELECT c.src_id,
c.tgt_id,
EXTRACT(EPOCH FROM c.create_time) ::BIGINT AS created_at
FROM cand c
JOIN rc ON TRUE
WHERE c.dist < $3
AND c.chunk_ids && (rc.chunk_arr::varchar[])
ORDER BY c.dist, c.id
LIMIT $4;
LIMIT $3;
""",
"entities": """
WITH relevant_chunks AS (SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2
:: varchar [] IS NULL OR full_doc_id = ANY ($2:: varchar [])
)
, rc AS (
SELECT array_agg(chunk_id) AS chunk_arr
FROM relevant_chunks
), cand AS (
SELECT
e.id, e.entity_name, e.chunk_ids, e.create_time, e.content_vector <=> '[{embedding_string}]'::vector AS dist
SELECT e.entity_name,
EXTRACT(EPOCH FROM e.create_time)::BIGINT AS created_at
FROM LIGHTRAG_VDB_ENTITY e
WHERE e.workspace = $1
AND e.content_vector <=> '[{embedding_string}]'::vector < $2
ORDER BY e.content_vector <=> '[{embedding_string}]'::vector
LIMIT ($4 * 50)
)
SELECT c.entity_name,
EXTRACT(EPOCH FROM c.create_time) ::BIGINT AS created_at
FROM cand c
JOIN rc ON TRUE
WHERE c.dist < $3
AND c.chunk_ids && (rc.chunk_arr::varchar[])
ORDER BY c.dist, c.id
LIMIT $4;
LIMIT $3;
""",
"chunks": """
WITH relevant_chunks AS (SELECT id as chunk_id
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2
:: varchar [] IS NULL OR full_doc_id = ANY ($2:: varchar [])
)
, rc AS (
SELECT array_agg(chunk_id) AS chunk_arr
FROM relevant_chunks
), cand AS (
SELECT
id, content, file_path, create_time, content_vector <=> '[{embedding_string}]'::vector AS dist
FROM LIGHTRAG_VDB_CHUNKS
WHERE workspace = $1
ORDER BY content_vector <=> '[{embedding_string}]'::vector
LIMIT ($4 * 50)
)
SELECT c.id,
c.content,
c.file_path,
EXTRACT(EPOCH FROM c.create_time) ::BIGINT AS created_at
FROM cand c
JOIN rc ON TRUE
WHERE c.dist < $3
AND c.id = ANY (rc.chunk_arr)
ORDER BY c.dist, c.id
LIMIT $4;
EXTRACT(EPOCH FROM c.create_time)::BIGINT AS created_at
FROM LIGHTRAG_VDB_CHUNKS c
WHERE c.workspace = $1
AND c.content_vector <=> '[{embedding_string}]'::vector < $2
ORDER BY c.content_vector <=> '[{embedding_string}]'::vector
LIMIT $3;
""",
# DROP tables
"drop_specifiy_table_workspace": """

View file

@ -200,14 +200,19 @@ class QdrantVectorDBStorage(BaseVectorStorage):
return results
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
if query_embedding is not None:
embedding = query_embedding
else:
embedding_result = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embedding_result[0]
results = self._client.search(
collection_name=self.final_namespace,
query_vector=embedding[0],
query_vector=embedding,
limit=top_k,
with_payload=True,
score_threshold=self.cosine_better_than_threshold,

View file

@ -2234,6 +2234,7 @@ async def _get_vector_context(
query: str,
chunks_vdb: BaseVectorStorage,
query_param: QueryParam,
query_embedding: list[float] = None,
) -> list[dict]:
"""
Retrieve text chunks from the vector database without reranking or truncation.
@ -2245,6 +2246,7 @@ async def _get_vector_context(
query: The query string to search for
chunks_vdb: Vector database containing document chunks
query_param: Query parameters including chunk_top_k and ids
query_embedding: Optional pre-computed query embedding to avoid redundant embedding calls
Returns:
List of text chunks with metadata
@ -2253,7 +2255,9 @@ async def _get_vector_context(
# Use chunk_top_k if specified, otherwise fall back to top_k
search_top_k = query_param.chunk_top_k or query_param.top_k
results = await chunks_vdb.query(query, top_k=search_top_k, ids=query_param.ids)
results = await chunks_vdb.query(
query, top_k=search_top_k, query_embedding=query_embedding
)
if not results:
logger.info(f"Naive query: 0 chunks (chunk_top_k: {search_top_k})")
return []
@ -2291,6 +2295,10 @@ async def _build_query_context(
query_param: QueryParam,
chunks_vdb: BaseVectorStorage = None,
):
if not query:
logger.warning("Query is empty, skipping context building")
return ""
logger.info(f"Process {os.getpid()} building query context...")
# Collect chunks from different sources separately
@ -2309,12 +2317,12 @@ async def _build_query_context(
# Track chunk sources and metadata for final logging
chunk_tracking = {} # chunk_id -> {source, frequency, order}
# Pre-compute query embedding if vector similarity method is used
# Pre-compute query embedding once for all vector operations
kg_chunk_pick_method = text_chunks_db.global_config.get(
"kg_chunk_pick_method", DEFAULT_KG_CHUNK_PICK_METHOD
)
query_embedding = None
if kg_chunk_pick_method == "VECTOR" and query and chunks_vdb:
if query and (kg_chunk_pick_method == "VECTOR" or chunks_vdb):
embedding_func_config = text_chunks_db.embedding_func
if embedding_func_config and embedding_func_config.func:
try:
@ -2322,9 +2330,7 @@ async def _build_query_context(
query_embedding = query_embedding[
0
] # Extract first embedding from batch result
logger.debug(
"Pre-computed query embedding for vector similarity chunk selection"
)
logger.debug("Pre-computed query embedding for all vector operations")
except Exception as e:
logger.warning(f"Failed to pre-compute query embedding: {e}")
query_embedding = None
@ -2368,6 +2374,7 @@ async def _build_query_context(
query,
chunks_vdb,
query_param,
query_embedding,
)
# Track vector chunks with source metadata
for i, chunk in enumerate(vector_chunks):
@ -2830,9 +2837,7 @@ async def _get_node_data(
f"Query nodes: {query}, top_k: {query_param.top_k}, cosine: {entities_vdb.cosine_better_than_threshold}"
)
results = await entities_vdb.query(
query, top_k=query_param.top_k, ids=query_param.ids
)
results = await entities_vdb.query(query, top_k=query_param.top_k)
if not len(results):
return [], []
@ -3108,9 +3113,7 @@ async def _get_edge_data(
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
)
results = await relationships_vdb.query(
keywords, top_k=query_param.top_k, ids=query_param.ids
)
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
if not len(results):
return [], []
@ -3433,7 +3436,7 @@ async def naive_query(
tokenizer: Tokenizer = global_config["tokenizer"]
chunks = await _get_vector_context(query, chunks_vdb, query_param)
chunks = await _get_vector_context(query, chunks_vdb, query_param, None)
if chunks is None or len(chunks) == 0:
return PROMPTS["fail_response"]