Merge pull request #1714 from danielaskdd/fix-mix-query

Fix: Resolving issue with PostgreSQL document chunk KV storage depending on vector storage
This commit is contained in:
Daniel.y 2025-06-28 19:55:22 +08:00 committed by GitHub
commit 0e683a50e8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 117 additions and 13 deletions

View file

@ -189,6 +189,64 @@ class PostgreSQLDB:
# Log error but don't interrupt the process
logger.warning(f"Failed to migrate {table_name}.{column_name}: {e}")
async def _migrate_doc_chunks_to_vdb_chunks(self):
"""
Migrate data from LIGHTRAG_DOC_CHUNKS to LIGHTRAG_VDB_CHUNKS if specific conditions are met.
This migration is intended for users who are upgrading and have an older table structure
where LIGHTRAG_DOC_CHUNKS contained a `content_vector` column.
"""
try:
# 1. Check if the new table LIGHTRAG_VDB_CHUNKS is empty
vdb_chunks_count_sql = "SELECT COUNT(1) as count FROM LIGHTRAG_VDB_CHUNKS"
vdb_chunks_count_result = await self.query(vdb_chunks_count_sql)
if vdb_chunks_count_result and vdb_chunks_count_result["count"] > 0:
logger.info(
"Skipping migration: LIGHTRAG_VDB_CHUNKS already contains data."
)
return
# 2. Check if `content_vector` column exists in the old table
check_column_sql = """
SELECT 1 FROM information_schema.columns
WHERE table_name = 'lightrag_doc_chunks' AND column_name = 'content_vector'
"""
column_exists = await self.query(check_column_sql)
if not column_exists:
logger.info(
"Skipping migration: `content_vector` not found in LIGHTRAG_DOC_CHUNKS"
)
return
# 3. Check if the old table LIGHTRAG_DOC_CHUNKS has data
doc_chunks_count_sql = "SELECT COUNT(1) as count FROM LIGHTRAG_DOC_CHUNKS"
doc_chunks_count_result = await self.query(doc_chunks_count_sql)
if not doc_chunks_count_result or doc_chunks_count_result["count"] == 0:
logger.info("Skipping migration: LIGHTRAG_DOC_CHUNKS is empty.")
return
# 4. Perform the migration
logger.info(
"Starting data migration from LIGHTRAG_DOC_CHUNKS to LIGHTRAG_VDB_CHUNKS..."
)
migration_sql = """
INSERT INTO LIGHTRAG_VDB_CHUNKS (
id, workspace, full_doc_id, chunk_order_index, tokens, content,
content_vector, file_path, create_time, update_time
)
SELECT
id, workspace, full_doc_id, chunk_order_index, tokens, content,
content_vector, file_path, create_time, update_time
FROM LIGHTRAG_DOC_CHUNKS
ON CONFLICT (workspace, id) DO NOTHING;
"""
await self.execute(migration_sql)
logger.info("Data migration to LIGHTRAG_VDB_CHUNKS completed successfully.")
except Exception as e:
logger.error(f"Failed during data migration to LIGHTRAG_VDB_CHUNKS: {e}")
# Do not re-raise, to allow the application to start
async def check_tables(self):
# First create all tables
for k, v in TABLES.items():
@ -240,6 +298,12 @@ class PostgreSQLDB:
logger.error(f"PostgreSQL, Failed to migrate LLM cache chunk_id field: {e}")
# Don't throw an exception, allow the initialization process to continue
# Finally, attempt to migrate old doc chunks data if needed
try:
await self._migrate_doc_chunks_to_vdb_chunks()
except Exception as e:
logger.error(f"PostgreSQL, Failed to migrate doc_chunks to vdb_chunks: {e}")
async def query(
self,
sql: str,
@ -520,7 +584,21 @@ class PGKVStorage(BaseKVStorage):
return
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
pass
current_time = datetime.datetime.now(timezone.utc)
for k, v in data.items():
upsert_sql = SQL_TEMPLATES["upsert_text_chunk"]
_data = {
"workspace": self.db.workspace,
"id": k,
"tokens": v["tokens"],
"chunk_order_index": v["chunk_order_index"],
"full_doc_id": v["full_doc_id"],
"content": v["content"],
"file_path": v["file_path"],
"create_time": current_time,
"update_time": current_time,
}
await self.db.execute(upsert_sql, _data)
elif is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
for k, v in data.items():
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
@ -2409,7 +2487,7 @@ class PGGraphStorage(BaseGraphStorage):
NAMESPACE_TABLE_MAP = {
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_VDB_CHUNKS",
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_VDB_ENTITY",
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_VDB_RELATION",
NameSpace.DOC_STATUS: "LIGHTRAG_DOC_STATUS",
@ -2444,13 +2522,27 @@ TABLES = {
chunk_order_index INTEGER,
tokens INTEGER,
content TEXT,
content_vector VECTOR,
file_path VARCHAR(256),
create_time TIMESTAMP(0) WITH TIME ZONE,
update_time TIMESTAMP(0) WITH TIME ZONE,
CONSTRAINT LIGHTRAG_DOC_CHUNKS_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_VDB_CHUNKS": {
"ddl": """CREATE TABLE LIGHTRAG_VDB_CHUNKS (
id VARCHAR(255),
workspace VARCHAR(255),
full_doc_id VARCHAR(256),
chunk_order_index INTEGER,
tokens INTEGER,
content TEXT,
content_vector VECTOR,
file_path VARCHAR(256),
create_time TIMESTAMP(0) WITH TIME ZONE,
update_time TIMESTAMP(0) WITH TIME ZONE,
CONSTRAINT LIGHTRAG_VDB_CHUNKS_PK PRIMARY KEY (workspace, id)
)"""
},
"LIGHTRAG_VDB_ENTITY": {
"ddl": """CREATE TABLE LIGHTRAG_VDB_ENTITY (
id VARCHAR(255),
@ -2551,7 +2643,20 @@ SQL_TEMPLATES = {
chunk_id=EXCLUDED.chunk_id,
update_time = CURRENT_TIMESTAMP
""",
"upsert_chunk": """INSERT INTO LIGHTRAG_DOC_CHUNKS (workspace, id, tokens,
"upsert_text_chunk": """INSERT INTO LIGHTRAG_DOC_CHUNKS (workspace, id, tokens,
chunk_order_index, full_doc_id, content, file_path,
create_time, update_time)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9)
ON CONFLICT (workspace,id) DO UPDATE
SET tokens=EXCLUDED.tokens,
chunk_order_index=EXCLUDED.chunk_order_index,
full_doc_id=EXCLUDED.full_doc_id,
content = EXCLUDED.content,
file_path=EXCLUDED.file_path,
update_time = EXCLUDED.update_time
""",
# SQL for VectorStorage
"upsert_chunk": """INSERT INTO LIGHTRAG_VDB_CHUNKS (workspace, id, tokens,
chunk_order_index, full_doc_id, content, content_vector, file_path,
create_time, update_time)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)
@ -2564,7 +2669,6 @@ SQL_TEMPLATES = {
file_path=EXCLUDED.file_path,
update_time = EXCLUDED.update_time
""",
# SQL for VectorStorage
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content,
content_vector, chunk_ids, file_path, create_time, update_time)
VALUES ($1, $2, $3, $4, $5, $6::varchar[], $7, $8, $9)
@ -2591,7 +2695,7 @@ SQL_TEMPLATES = {
"relationships": """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_DOC_CHUNKS
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
)
SELECT source_id as src_id, target_id as tgt_id, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at
@ -2608,7 +2712,7 @@ SQL_TEMPLATES = {
"entities": """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_DOC_CHUNKS
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
)
SELECT entity_name, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
@ -2625,13 +2729,13 @@ SQL_TEMPLATES = {
"chunks": """
WITH relevant_chunks AS (
SELECT id as chunk_id
FROM LIGHTRAG_DOC_CHUNKS
FROM LIGHTRAG_VDB_CHUNKS
WHERE $2::varchar[] IS NULL OR full_doc_id = ANY($2::varchar[])
)
SELECT id, content, file_path, EXTRACT(EPOCH FROM create_time)::BIGINT as created_at FROM
(
SELECT id, content, file_path, create_time, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
FROM LIGHTRAG_DOC_CHUNKS
FROM LIGHTRAG_VDB_CHUNKS
WHERE workspace=$1
AND id IN (SELECT chunk_id FROM relevant_chunks)
) as chunk_distances

View file

@ -394,13 +394,13 @@ class LightRAG:
embedding_func=self.embedding_func,
)
# TODO: deprecating, text_chunks is redundant with chunks_vdb
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
),
embedding_func=self.embedding_func,
)
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION

View file

@ -1647,7 +1647,7 @@ async def _get_vector_context(
f"Truncate chunks from {len(valid_chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
)
logger.info(
f"Vector query: {len(maybe_trun_chunks)} chunks, top_k: {query_param.top_k}"
f"Query chunks: {len(maybe_trun_chunks)} chunks, top_k: {query_param.top_k}"
)
if not maybe_trun_chunks:
@ -1871,7 +1871,7 @@ async def _get_node_data(
)
logger.info(
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} chunks"
f"Local query: {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} chunks"
)
# build prompt
@ -2180,7 +2180,7 @@ async def _get_edge_data(
),
)
logger.info(
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} chunks"
f"Global query: {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} chunks"
)
relations_context = []