Rename MAX_TOKENS to SUMMARY_MAX_TOKENS for clarity
This commit is contained in:
parent
aa22772721
commit
0e67ead8fa
5 changed files with 7 additions and 9 deletions
|
|
@ -265,7 +265,7 @@ if __name__ == "__main__":
|
||||||
| **embedding_func_max_async** | `int` | 最大并发异步嵌入进程数 | `16` |
|
| **embedding_func_max_async** | `int` | 最大并发异步嵌入进程数 | `16` |
|
||||||
| **llm_model_func** | `callable` | LLM生成的函数 | `gpt_4o_mini_complete` |
|
| **llm_model_func** | `callable` | LLM生成的函数 | `gpt_4o_mini_complete` |
|
||||||
| **llm_model_name** | `str` | 用于生成的LLM模型名称 | `meta-llama/Llama-3.2-1B-Instruct` |
|
| **llm_model_name** | `str` | 用于生成的LLM模型名称 | `meta-llama/Llama-3.2-1B-Instruct` |
|
||||||
| **summary_max_tokens** | `int` | 生成实体关系摘要时送给LLM的最大令牌数 | `32000`(默认值由环境变量MAX_TOKENS更改) |
|
| **summary_max_tokens** | `int` | 生成实体关系摘要时送给LLM的最大令牌数 | `32000`(由环境变量 SUMMARY_MAX_TOKENS 设置) |
|
||||||
| **llm_model_max_async** | `int` | 最大并发异步LLM进程数 | `4`(默认值由环境变量MAX_ASYNC更改) |
|
| **llm_model_max_async** | `int` | 最大并发异步LLM进程数 | `4`(默认值由环境变量MAX_ASYNC更改) |
|
||||||
| **llm_model_kwargs** | `dict` | LLM生成的附加参数 | |
|
| **llm_model_kwargs** | `dict` | LLM生成的附加参数 | |
|
||||||
| **vector_db_storage_cls_kwargs** | `dict` | 向量数据库的附加参数,如设置节点和关系检索的阈值 | cosine_better_than_threshold: 0.2(默认值由环境变量COSINE_THRESHOLD更改) |
|
| **vector_db_storage_cls_kwargs** | `dict` | 向量数据库的附加参数,如设置节点和关系检索的阈值 | cosine_better_than_threshold: 0.2(默认值由环境变量COSINE_THRESHOLD更改) |
|
||||||
|
|
|
||||||
|
|
@ -272,7 +272,7 @@ A full list of LightRAG init parameters:
|
||||||
| **embedding_func_max_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
|
| **embedding_func_max_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
|
||||||
| **llm_model_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
| **llm_model_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
||||||
| **llm_model_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
|
| **llm_model_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
|
||||||
| **summary_max_tokens** | `int` | Maximum tokens send to LLM to generate entity relation summaries | `32000`(default value changed by env var MAX_TOKENS) |
|
| **summary_max_tokens** | `int` | Maximum tokens send to LLM to generate entity relation summaries | `32000`(configured by env var SUMMARY_MAX_TOKENS) |
|
||||||
| **llm_model_max_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `4`(default value changed by env var MAX_ASYNC) |
|
| **llm_model_max_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `4`(default value changed by env var MAX_ASYNC) |
|
||||||
| **llm_model_kwargs** | `dict` | Additional parameters for LLM generation | |
|
| **llm_model_kwargs** | `dict` | Additional parameters for LLM generation | |
|
||||||
| **vector_db_storage_cls_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
|
| **vector_db_storage_cls_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
|
||||||
|
|
|
||||||
|
|
@ -107,7 +107,7 @@ ENABLE_LLM_CACHE_FOR_EXTRACT=true
|
||||||
### Entity and relation summarization configuration
|
### Entity and relation summarization configuration
|
||||||
### Number of duplicated entities/edges to trigger LLM re-summary on merge (at least 3 is recommented), and max tokens send to LLM
|
### Number of duplicated entities/edges to trigger LLM re-summary on merge (at least 3 is recommented), and max tokens send to LLM
|
||||||
# FORCE_LLM_SUMMARY_ON_MERGE=4
|
# FORCE_LLM_SUMMARY_ON_MERGE=4
|
||||||
# MAX_TOKENS=10000
|
# SUMMARY_MAX_TOKENS=10000
|
||||||
### Maximum number of entity extraction attempts for ambiguous content
|
### Maximum number of entity extraction attempts for ambiguous content
|
||||||
# MAX_GLEANING=1
|
# MAX_GLEANING=1
|
||||||
|
|
||||||
|
|
@ -148,18 +148,16 @@ LLM_BINDING_API_KEY=your_api_key
|
||||||
|
|
||||||
### OpenAI Specific Parameters
|
### OpenAI Specific Parameters
|
||||||
### Apply frequency penalty to prevent the LLM from generating repetitive or looping outputs
|
### Apply frequency penalty to prevent the LLM from generating repetitive or looping outputs
|
||||||
# OPENAI_LLM_FREQUENCY_PENALTY=1.1
|
|
||||||
# OPENAI_LLM_TEMPERATURE=1.0
|
# OPENAI_LLM_TEMPERATURE=1.0
|
||||||
### use the following command to see all support options for openai and azure_openai
|
### use the following command to see all support options for openai and azure_openai
|
||||||
### lightrag-server --llm-binding openai --help
|
### lightrag-server --llm-binding openai --help
|
||||||
|
|
||||||
### Ollama Server Specific Parameters
|
### Ollama Server Specific Parameters
|
||||||
### OLLAMA_LLM_NUM_CTX must be larger than MAX_TOTAL_TOKENS + 2000
|
### OLLAMA_LLM_NUM_CTX must be provided, and should at least larger than MAX_TOTAL_TOKENS + 2000
|
||||||
OLLAMA_LLM_NUM_CTX=32768
|
OLLAMA_LLM_NUM_CTX=32768
|
||||||
|
# OLLAMA_LLM_TEMPERATURE=1.0
|
||||||
### Stop sequences for Ollama LLM
|
### Stop sequences for Ollama LLM
|
||||||
# OLLAMA_LLM_STOP='["</s>", "Assistant:", "\n\n"]'
|
# OLLAMA_LLM_STOP='["</s>", "Assistant:", "\n\n"]'
|
||||||
### If OLLAMA_LLM_TEMPERATURE is not specified, the system will default to the value defined by TEMPERATURE
|
|
||||||
# OLLAMA_LLM_TEMPERATURE=0.85
|
|
||||||
### use the following command to see all support options for Ollama LLM
|
### use the following command to see all support options for Ollama LLM
|
||||||
### lightrag-server --llm-binding ollama --help
|
### lightrag-server --llm-binding ollama --help
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -122,7 +122,7 @@ def parse_args() -> argparse.Namespace:
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-tokens",
|
"--max-tokens",
|
||||||
type=int,
|
type=int,
|
||||||
default=get_env_value("MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS, int),
|
default=get_env_value("SUMMARY_MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS, int),
|
||||||
help=f"Maximum token size (default: from env or {DEFAULT_SUMMARY_MAX_TOKENS})",
|
help=f"Maximum token size (default: from env or {DEFAULT_SUMMARY_MAX_TOKENS})",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -283,7 +283,7 @@ class LightRAG:
|
||||||
"""Name of the LLM model used for generating responses."""
|
"""Name of the LLM model used for generating responses."""
|
||||||
|
|
||||||
summary_max_tokens: int = field(
|
summary_max_tokens: int = field(
|
||||||
default=int(os.getenv("MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS))
|
default=int(os.getenv("SUMMARY_MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS))
|
||||||
)
|
)
|
||||||
"""Maximum number of tokens allowed per LLM response."""
|
"""Maximum number of tokens allowed per LLM response."""
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue