diff --git a/lightrag/api/config.py b/lightrag/api/config.py index 92e81253..baaf9c52 100644 --- a/lightrag/api/config.py +++ b/lightrag/api/config.py @@ -343,6 +343,7 @@ def parse_args() -> argparse.Namespace: args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest") args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest") args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int) + args.embedding_send_dim = get_env_value("EMBEDDING_SEND_DIM", False, bool) # Inject chunk configuration args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int) diff --git a/lightrag/api/lightrag_server.py b/lightrag/api/lightrag_server.py index 6da76f37..b3a439e8 100644 --- a/lightrag/api/lightrag_server.py +++ b/lightrag/api/lightrag_server.py @@ -709,8 +709,8 @@ def create_app(args): args=args, # Pass args object for fallback option generation ) - # Check environment variable for sending dimensions - embedding_send_dim = os.getenv("EMBEDDING_SEND_DIM", "false").lower() == "true" + # Get embedding_send_dim from centralized configuration + embedding_send_dim = args.embedding_send_dim # Check if the function signature has embedding_dim parameter # Note: Since optimized_embedding_func is an async function, inspect its signature