This commit is contained in:
Raphaël MANSUY 2025-12-04 19:14:28 +08:00
parent 49b0953ac1
commit 086191ae5a
2 changed files with 38 additions and 58 deletions

View file

@ -713,7 +713,6 @@ def create_app(args):
)
# Step 3: Create optimized embedding function (calls underlying function directly)
# Note: When model is None, each binding will use its own default model
async def optimized_embedding_function(texts, embedding_dim=None):
try:
if binding == "lollms":
@ -725,9 +724,9 @@ def create_app(args):
if isinstance(lollms_embed, EmbeddingFunc)
else lollms_embed
)
# lollms embed_model is not used (server uses configured vectorizer)
# Only pass base_url and api_key
return await actual_func(texts, base_url=host, api_key=api_key)
return await actual_func(
texts, embed_model=model, host=host, api_key=api_key
)
elif binding == "ollama":
from lightrag.llm.ollama import ollama_embed
@ -746,16 +745,13 @@ def create_app(args):
ollama_options = OllamaEmbeddingOptions.options_dict(args)
# Pass embed_model only if provided, let function use its default (bge-m3:latest)
kwargs = {
"texts": texts,
"host": host,
"api_key": api_key,
"options": ollama_options,
}
if model:
kwargs["embed_model"] = model
return await actual_func(**kwargs)
return await actual_func(
texts,
embed_model=model,
host=host,
api_key=api_key,
options=ollama_options,
)
elif binding == "azure_openai":
from lightrag.llm.azure_openai import azure_openai_embed
@ -764,11 +760,7 @@ def create_app(args):
if isinstance(azure_openai_embed, EmbeddingFunc)
else azure_openai_embed
)
# Pass model only if provided, let function use its default otherwise
kwargs = {"texts": texts, "api_key": api_key}
if model:
kwargs["model"] = model
return await actual_func(**kwargs)
return await actual_func(texts, model=model, api_key=api_key)
elif binding == "aws_bedrock":
from lightrag.llm.bedrock import bedrock_embed
@ -777,11 +769,7 @@ def create_app(args):
if isinstance(bedrock_embed, EmbeddingFunc)
else bedrock_embed
)
# Pass model only if provided, let function use its default otherwise
kwargs = {"texts": texts}
if model:
kwargs["model"] = model
return await actual_func(**kwargs)
return await actual_func(texts, model=model)
elif binding == "jina":
from lightrag.llm.jina import jina_embed
@ -790,16 +778,13 @@ def create_app(args):
if isinstance(jina_embed, EmbeddingFunc)
else jina_embed
)
# Pass model only if provided, let function use its default (jina-embeddings-v4)
kwargs = {
"texts": texts,
"embedding_dim": embedding_dim,
"base_url": host,
"api_key": api_key,
}
if model:
kwargs["model"] = model
return await actual_func(**kwargs)
return await actual_func(
texts,
model=model,
embedding_dim=embedding_dim,
base_url=host,
api_key=api_key,
)
elif binding == "gemini":
from lightrag.llm.gemini import gemini_embed
@ -817,19 +802,14 @@ def create_app(args):
gemini_options = GeminiEmbeddingOptions.options_dict(args)
# Pass model only if provided, let function use its default (gemini-embedding-001)
kwargs = {
"texts": texts,
"base_url": host,
"api_key": api_key,
"embedding_dim": embedding_dim,
"task_type": gemini_options.get(
"task_type", "RETRIEVAL_DOCUMENT"
),
}
if model:
kwargs["model"] = model
return await actual_func(**kwargs)
return await actual_func(
texts,
model=model,
base_url=host,
api_key=api_key,
embedding_dim=embedding_dim,
task_type=gemini_options.get("task_type", "RETRIEVAL_DOCUMENT"),
)
else: # openai and compatible
from lightrag.llm.openai import openai_embed
@ -838,16 +818,13 @@ def create_app(args):
if isinstance(openai_embed, EmbeddingFunc)
else openai_embed
)
# Pass model only if provided, let function use its default (text-embedding-3-small)
kwargs = {
"texts": texts,
"base_url": host,
"api_key": api_key,
"embedding_dim": embedding_dim,
}
if model:
kwargs["model"] = model
return await actual_func(**kwargs)
return await actual_func(
texts,
model=model,
base_url=host,
api_key=api_key,
embedding_dim=embedding_dim,
)
except ImportError as e:
raise Exception(f"Failed to import {binding} embedding: {e}")

View file

@ -69,6 +69,7 @@ async def fetch_data(url, headers, data):
)
async def jina_embed(
texts: list[str],
model: str = "jina-embeddings-v4",
embedding_dim: int = 2048,
late_chunking: bool = False,
base_url: str = None,
@ -78,6 +79,8 @@ async def jina_embed(
Args:
texts: List of texts to embed.
model: The Jina embedding model to use (default: jina-embeddings-v4).
Supported models: jina-embeddings-v3, jina-embeddings-v4, etc.
embedding_dim: The embedding dimensions (default: 2048 for jina-embeddings-v4).
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
Do NOT manually pass this parameter when calling the function directly.
@ -107,7 +110,7 @@ async def jina_embed(
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
}
data = {
"model": "jina-embeddings-v4",
"model": model,
"task": "text-matching",
"dimensions": embedding_dim,
"embedding_type": "base64",