Refactor keyword_extraction from kwargs to explicit parameter
• Add keyword_extraction param to functions
• Remove kwargs.pop() calls
• Update function signatures
• Improve parameter documentation
• Make parameter handling consistent
(cherry picked from commit 2f16065256)
This commit is contained in:
parent
35dd68d767
commit
033ee5c0f5
1 changed files with 37 additions and 10 deletions
|
|
@ -138,6 +138,9 @@ async def openai_complete_if_cache(
|
|||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||
|
|
@ -167,13 +170,15 @@ async def openai_complete_if_cache(
|
|||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False.
|
||||
stream: Whether to stream the response. Default is False.
|
||||
timeout: Request timeout in seconds. Default is None.
|
||||
keyword_extraction: Whether to enable keyword extraction mode. When True, triggers
|
||||
special response formatting for keyword extraction. Default is False.
|
||||
**kwargs: Additional keyword arguments to pass to the OpenAI API.
|
||||
Special kwargs:
|
||||
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
|
||||
These will be passed to the client constructor but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
||||
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
||||
|
||||
Returns:
|
||||
The completed text (with integrated COT content if available) or an async iterator
|
||||
|
|
@ -194,7 +199,6 @@ async def openai_complete_if_cache(
|
|||
|
||||
# Remove special kwargs that shouldn't be passed to OpenAI
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
|
||||
# Extract client configuration options
|
||||
client_configs = kwargs.pop("openai_client_configs", {})
|
||||
|
|
@ -224,6 +228,12 @@ async def openai_complete_if_cache(
|
|||
|
||||
messages = kwargs.pop("messages", messages)
|
||||
|
||||
# Add explicit parameters back to kwargs so they're passed to OpenAI API
|
||||
if stream is not None:
|
||||
kwargs["stream"] = stream
|
||||
if timeout is not None:
|
||||
kwargs["timeout"] = timeout
|
||||
|
||||
try:
|
||||
# Don't use async with context manager, use client directly
|
||||
if "response_format" in kwargs:
|
||||
|
|
@ -512,7 +522,6 @@ async def openai_complete(
|
|||
) -> Union[str, AsyncIterator[str]]:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
|
|
@ -521,6 +530,7 @@ async def openai_complete(
|
|||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -535,7 +545,6 @@ async def gpt_4o_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
|
|
@ -544,6 +553,7 @@ async def gpt_4o_complete(
|
|||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -558,7 +568,6 @@ async def gpt_4o_mini_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
|
|
@ -567,6 +576,7 @@ async def gpt_4o_mini_complete(
|
|||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -581,13 +591,13 @@ async def nvidia_openai_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
result = await openai_complete_if_cache(
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
base_url="https://integrate.api.nvidia.com/v1",
|
||||
**kwargs,
|
||||
)
|
||||
|
|
@ -609,6 +619,7 @@ async def openai_embed(
|
|||
model: str = "text-embedding-3-small",
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
embedding_dim: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
) -> np.ndarray:
|
||||
|
|
@ -619,6 +630,12 @@ async def openai_embed(
|
|||
model: The OpenAI embedding model to use.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
|
||||
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
|
||||
Do NOT manually pass this parameter when calling the function directly.
|
||||
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
|
||||
Manually passing a different value will trigger a warning and be ignored.
|
||||
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
|
@ -638,9 +655,19 @@ async def openai_embed(
|
|||
)
|
||||
|
||||
async with openai_async_client:
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="base64"
|
||||
)
|
||||
# Prepare API call parameters
|
||||
api_params = {
|
||||
"model": model,
|
||||
"input": texts,
|
||||
"encoding_format": "base64",
|
||||
}
|
||||
|
||||
# Add dimensions parameter only if embedding_dim is provided
|
||||
if embedding_dim is not None:
|
||||
api_params["dimensions"] = embedding_dim
|
||||
|
||||
# Make API call
|
||||
response = await openai_async_client.embeddings.create(**api_params)
|
||||
|
||||
if token_tracker and hasattr(response, "usage"):
|
||||
token_counts = {
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue