Optimize context building with weighted polling and round-robin data selection

This commit is contained in:
yangdx 2025-07-24 01:18:21 +08:00
parent 958151e610
commit 02f79508e0
2 changed files with 509 additions and 416 deletions

File diff suppressed because it is too large Load diff

View file

@ -777,39 +777,6 @@ def truncate_list_by_token_size(
return list_data
def process_combine_contexts(*context_lists):
"""
Combine multiple context lists and remove duplicate content
Args:
*context_lists: Any number of context lists
Returns:
Combined context list with duplicates removed
"""
seen_content = {}
combined_data = []
# Iterate through all input context lists
for context_list in context_lists:
if not context_list: # Skip empty lists
continue
for item in context_list:
content_dict = {
k: v for k, v in item.items() if k != "id" and k != "created_at"
}
content_key = tuple(sorted(content_dict.items()))
if content_key not in seen_content:
seen_content[content_key] = item
combined_data.append(item)
# Reassign IDs
for i, item in enumerate(combined_data):
item["id"] = str(i + 1)
return combined_data
def cosine_similarity(v1, v2):
"""Calculate cosine similarity between two vectors"""
dot_product = np.dot(v1, v2)
@ -1673,6 +1640,86 @@ def check_storage_env_vars(storage_name: str) -> None:
)
def linear_gradient_weighted_polling(
entities_or_relations: list[dict],
max_related_chunks: int,
min_related_chunks: int = 1,
) -> list[str]:
"""
Linear gradient weighted polling algorithm for text chunk selection.
This algorithm ensures that entities/relations with higher importance get more text chunks,
forming a linear decreasing allocation pattern.
Args:
entities_or_relations: List of entities or relations sorted by importance (high to low)
max_related_chunks: Expected number of text chunks for the highest importance entity/relation
min_related_chunks: Expected number of text chunks for the lowest importance entity/relation
Returns:
List of selected text chunk IDs
"""
if not entities_or_relations:
return []
n = len(entities_or_relations)
if n == 1:
# Only one entity/relation, return its first max_related_chunks text chunks
entity_chunks = entities_or_relations[0].get("sorted_chunks", [])
return entity_chunks[:max_related_chunks]
# Calculate expected text chunk count for each position (linear decrease)
expected_counts = []
for i in range(n):
# Linear interpolation: from max_related_chunks to min_related_chunks
ratio = i / (n - 1) if n > 1 else 0
expected = max_related_chunks - ratio * (
max_related_chunks - min_related_chunks
)
expected_counts.append(int(round(expected)))
# First round allocation: allocate by expected values
selected_chunks = []
used_counts = [] # Track number of chunks used by each entity
total_remaining = 0 # Accumulate remaining quotas
for i, entity_rel in enumerate(entities_or_relations):
entity_chunks = entity_rel.get("sorted_chunks", [])
expected = expected_counts[i]
# Actual allocatable count
actual = min(expected, len(entity_chunks))
selected_chunks.extend(entity_chunks[:actual])
used_counts.append(actual)
# Accumulate remaining quota
remaining = expected - actual
if remaining > 0:
total_remaining += remaining
# Second round allocation: multi-round scanning to allocate remaining quotas
for _ in range(total_remaining):
allocated = False
# Scan entities one by one, allocate one chunk when finding unused chunks
for i, entity_rel in enumerate(entities_or_relations):
entity_chunks = entity_rel.get("sorted_chunks", [])
# Check if there are still unused chunks
if used_counts[i] < len(entity_chunks):
# Allocate one chunk
selected_chunks.append(entity_chunks[used_counts[i]])
used_counts[i] += 1
allocated = True
break
# If no chunks were allocated in this round, all entities are exhausted
if not allocated:
break
return selected_chunks
class TokenTracker:
"""Track token usage for LLM calls."""