Optimize context building with weighted polling and round-robin data selection
This commit is contained in:
parent
958151e610
commit
02f79508e0
2 changed files with 509 additions and 416 deletions
File diff suppressed because it is too large
Load diff
|
|
@ -777,39 +777,6 @@ def truncate_list_by_token_size(
|
|||
return list_data
|
||||
|
||||
|
||||
def process_combine_contexts(*context_lists):
|
||||
"""
|
||||
Combine multiple context lists and remove duplicate content
|
||||
|
||||
Args:
|
||||
*context_lists: Any number of context lists
|
||||
|
||||
Returns:
|
||||
Combined context list with duplicates removed
|
||||
"""
|
||||
seen_content = {}
|
||||
combined_data = []
|
||||
|
||||
# Iterate through all input context lists
|
||||
for context_list in context_lists:
|
||||
if not context_list: # Skip empty lists
|
||||
continue
|
||||
for item in context_list:
|
||||
content_dict = {
|
||||
k: v for k, v in item.items() if k != "id" and k != "created_at"
|
||||
}
|
||||
content_key = tuple(sorted(content_dict.items()))
|
||||
if content_key not in seen_content:
|
||||
seen_content[content_key] = item
|
||||
combined_data.append(item)
|
||||
|
||||
# Reassign IDs
|
||||
for i, item in enumerate(combined_data):
|
||||
item["id"] = str(i + 1)
|
||||
|
||||
return combined_data
|
||||
|
||||
|
||||
def cosine_similarity(v1, v2):
|
||||
"""Calculate cosine similarity between two vectors"""
|
||||
dot_product = np.dot(v1, v2)
|
||||
|
|
@ -1673,6 +1640,86 @@ def check_storage_env_vars(storage_name: str) -> None:
|
|||
)
|
||||
|
||||
|
||||
def linear_gradient_weighted_polling(
|
||||
entities_or_relations: list[dict],
|
||||
max_related_chunks: int,
|
||||
min_related_chunks: int = 1,
|
||||
) -> list[str]:
|
||||
"""
|
||||
Linear gradient weighted polling algorithm for text chunk selection.
|
||||
|
||||
This algorithm ensures that entities/relations with higher importance get more text chunks,
|
||||
forming a linear decreasing allocation pattern.
|
||||
|
||||
Args:
|
||||
entities_or_relations: List of entities or relations sorted by importance (high to low)
|
||||
max_related_chunks: Expected number of text chunks for the highest importance entity/relation
|
||||
min_related_chunks: Expected number of text chunks for the lowest importance entity/relation
|
||||
|
||||
Returns:
|
||||
List of selected text chunk IDs
|
||||
"""
|
||||
if not entities_or_relations:
|
||||
return []
|
||||
|
||||
n = len(entities_or_relations)
|
||||
if n == 1:
|
||||
# Only one entity/relation, return its first max_related_chunks text chunks
|
||||
entity_chunks = entities_or_relations[0].get("sorted_chunks", [])
|
||||
return entity_chunks[:max_related_chunks]
|
||||
|
||||
# Calculate expected text chunk count for each position (linear decrease)
|
||||
expected_counts = []
|
||||
for i in range(n):
|
||||
# Linear interpolation: from max_related_chunks to min_related_chunks
|
||||
ratio = i / (n - 1) if n > 1 else 0
|
||||
expected = max_related_chunks - ratio * (
|
||||
max_related_chunks - min_related_chunks
|
||||
)
|
||||
expected_counts.append(int(round(expected)))
|
||||
|
||||
# First round allocation: allocate by expected values
|
||||
selected_chunks = []
|
||||
used_counts = [] # Track number of chunks used by each entity
|
||||
total_remaining = 0 # Accumulate remaining quotas
|
||||
|
||||
for i, entity_rel in enumerate(entities_or_relations):
|
||||
entity_chunks = entity_rel.get("sorted_chunks", [])
|
||||
expected = expected_counts[i]
|
||||
|
||||
# Actual allocatable count
|
||||
actual = min(expected, len(entity_chunks))
|
||||
selected_chunks.extend(entity_chunks[:actual])
|
||||
used_counts.append(actual)
|
||||
|
||||
# Accumulate remaining quota
|
||||
remaining = expected - actual
|
||||
if remaining > 0:
|
||||
total_remaining += remaining
|
||||
|
||||
# Second round allocation: multi-round scanning to allocate remaining quotas
|
||||
for _ in range(total_remaining):
|
||||
allocated = False
|
||||
|
||||
# Scan entities one by one, allocate one chunk when finding unused chunks
|
||||
for i, entity_rel in enumerate(entities_or_relations):
|
||||
entity_chunks = entity_rel.get("sorted_chunks", [])
|
||||
|
||||
# Check if there are still unused chunks
|
||||
if used_counts[i] < len(entity_chunks):
|
||||
# Allocate one chunk
|
||||
selected_chunks.append(entity_chunks[used_counts[i]])
|
||||
used_counts[i] += 1
|
||||
allocated = True
|
||||
break
|
||||
|
||||
# If no chunks were allocated in this round, all entities are exhausted
|
||||
if not allocated:
|
||||
break
|
||||
|
||||
return selected_chunks
|
||||
|
||||
|
||||
class TokenTracker:
|
||||
"""Track token usage for LLM calls."""
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue