Merge pull request #2403 from danielaskdd/azure-cot-handling
Refact: Consolidate Azure OpenAI and OpenAI implementations
This commit is contained in:
commit
021b637dc3
3 changed files with 366 additions and 224 deletions
|
|
@ -1,193 +1,22 @@
|
|||
from collections.abc import Iterable
|
||||
import os
|
||||
import pipmaster as pm # Pipmaster for dynamic library install
|
||||
"""
|
||||
Azure OpenAI compatibility layer.
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("openai"):
|
||||
pm.install("openai")
|
||||
This module provides backward compatibility by re-exporting Azure OpenAI functions
|
||||
from the main openai module where the actual implementation resides.
|
||||
|
||||
from openai import (
|
||||
AsyncAzureOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
)
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
All core logic for both OpenAI and Azure OpenAI now lives in lightrag.llm.openai,
|
||||
with this module serving as a thin compatibility wrapper for existing code that
|
||||
imports from lightrag.llm.azure_openai.
|
||||
"""
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
from lightrag.llm.openai import (
|
||||
azure_openai_complete_if_cache,
|
||||
azure_openai_complete,
|
||||
azure_openai_embed,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APIConnectionError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: Iterable[ChatCompletionMessageParam] | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if enable_cot:
|
||||
logger.debug(
|
||||
"enable_cot=True is not supported for the Azure OpenAI API and will be ignored."
|
||||
)
|
||||
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
||||
base_url = (
|
||||
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
kwargs.pop("hashing_kv", None)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
# Handle keyword extraction mode
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=base_url,
|
||||
azure_deployment=deployment,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
)
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
if history_messages:
|
||||
messages.extend(history_messages)
|
||||
if prompt is not None:
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
|
||||
if hasattr(response, "__aiter__"):
|
||||
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
yield content
|
||||
|
||||
return inner()
|
||||
else:
|
||||
message = response.choices[0].message
|
||||
|
||||
# Handle parsed responses (structured output via response_format)
|
||||
# When using beta.chat.completions.parse(), the response is in message.parsed
|
||||
if hasattr(message, "parsed") and message.parsed is not None:
|
||||
# Serialize the parsed structured response to JSON
|
||||
content = message.parsed.model_dump_json()
|
||||
logger.debug("Using parsed structured response from API")
|
||||
else:
|
||||
# Handle regular content responses
|
||||
content = message.content
|
||||
if content and r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
|
||||
return content
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
result = await azure_openai_complete_if_cache(
|
||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_embed(
|
||||
texts: list[str],
|
||||
model: str | None = None,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
deployment = (
|
||||
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||
or model
|
||||
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
)
|
||||
base_url = (
|
||||
base_url
|
||||
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
||||
or os.getenv("EMBEDDING_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key
|
||||
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
||||
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=base_url,
|
||||
azure_deployment=deployment,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model or deployment, input=texts, encoding_format="float"
|
||||
)
|
||||
return np.array([dp.embedding for dp in response.data])
|
||||
__all__ = [
|
||||
"azure_openai_complete_if_cache",
|
||||
"azure_openai_complete",
|
||||
"azure_openai_embed",
|
||||
]
|
||||
|
|
|
|||
|
|
@ -77,46 +77,86 @@ class InvalidResponseError(Exception):
|
|||
def create_openai_async_client(
|
||||
api_key: str | None = None,
|
||||
base_url: str | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
timeout: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
) -> AsyncOpenAI:
|
||||
"""Create an AsyncOpenAI client with the given configuration.
|
||||
"""Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration.
|
||||
|
||||
Args:
|
||||
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
|
||||
use_azure: Whether to create an Azure OpenAI client. Default is False.
|
||||
azure_deployment: Azure OpenAI deployment name (only used when use_azure=True).
|
||||
api_version: Azure OpenAI API version (only used when use_azure=True).
|
||||
timeout: Request timeout in seconds.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
||||
Returns:
|
||||
An AsyncOpenAI client instance.
|
||||
An AsyncOpenAI or AsyncAzureOpenAI client instance.
|
||||
"""
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
if use_azure:
|
||||
from openai import AsyncAzureOpenAI
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
if not api_key:
|
||||
api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get(
|
||||
"LLM_BINDING_API_KEY"
|
||||
)
|
||||
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
# Create a merged config dict with precedence: explicit params > client_configs
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
# Add explicit parameters (override client_configs)
|
||||
if base_url is not None:
|
||||
merged_configs["azure_endpoint"] = base_url
|
||||
if azure_deployment is not None:
|
||||
merged_configs["azure_deployment"] = azure_deployment
|
||||
if api_version is not None:
|
||||
merged_configs["api_version"] = api_version
|
||||
if timeout is not None:
|
||||
merged_configs["timeout"] = timeout
|
||||
|
||||
return AsyncAzureOpenAI(**merged_configs)
|
||||
else:
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
)
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
else:
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
)
|
||||
|
||||
if timeout is not None:
|
||||
merged_configs["timeout"] = timeout
|
||||
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
|
||||
|
||||
@retry(
|
||||
|
|
@ -141,6 +181,9 @@ async def openai_complete_if_cache(
|
|||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||
|
|
@ -162,23 +205,33 @@ async def openai_complete_if_cache(
|
|||
6. For non-streaming: COT content is prepended to regular content with <think> tags.
|
||||
|
||||
Args:
|
||||
model: The OpenAI model to use.
|
||||
model: The OpenAI model to use. For Azure, this can be the deployment name.
|
||||
prompt: The prompt to complete.
|
||||
system_prompt: Optional system prompt to include.
|
||||
history_messages: Optional list of previous messages in the conversation.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False.
|
||||
base_url: Optional base URL for the OpenAI API. For Azure, this should be the
|
||||
Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com/).
|
||||
api_key: Optional API key. For standard OpenAI, uses OPENAI_API_KEY environment
|
||||
variable if None. For Azure, uses AZURE_OPENAI_API_KEY if None.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
stream: Whether to stream the response. Default is False.
|
||||
timeout: Request timeout in seconds. Default is None.
|
||||
keyword_extraction: Whether to enable keyword extraction mode. When True, triggers
|
||||
special response formatting for keyword extraction. Default is False.
|
||||
use_azure: Whether to use Azure OpenAI service instead of standard OpenAI.
|
||||
When True, creates an AsyncAzureOpenAI client. Default is False.
|
||||
azure_deployment: Azure OpenAI deployment name. Only used when use_azure=True.
|
||||
If not specified, falls back to AZURE_OPENAI_DEPLOYMENT environment variable.
|
||||
api_version: Azure OpenAI API version (e.g., "2024-02-15-preview"). Only used
|
||||
when use_azure=True. If not specified, falls back to AZURE_OPENAI_API_VERSION
|
||||
environment variable.
|
||||
**kwargs: Additional keyword arguments to pass to the OpenAI API.
|
||||
Special kwargs:
|
||||
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
|
||||
These will be passed to the client constructor but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
explicit parameters (api_key, base_url). Supports proxy configuration,
|
||||
custom headers, retry policies, etc.
|
||||
|
||||
Returns:
|
||||
The completed text (with integrated COT content if available) or an async iterator
|
||||
|
|
@ -207,10 +260,14 @@ async def openai_complete_if_cache(
|
|||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
|
||||
# Create the OpenAI client
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
client_configs=client_configs,
|
||||
)
|
||||
|
||||
|
|
@ -631,24 +688,40 @@ async def openai_embed(
|
|||
embedding_dim: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Generate embeddings for a list of texts using OpenAI's API.
|
||||
|
||||
This function supports both standard OpenAI and Azure OpenAI services.
|
||||
|
||||
Args:
|
||||
texts: List of texts to embed.
|
||||
model: The OpenAI embedding model to use.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
model: The embedding model to use. For standard OpenAI (e.g., "text-embedding-3-small").
|
||||
For Azure, this can be the deployment name.
|
||||
base_url: Optional base URL for the API. For standard OpenAI, uses default OpenAI endpoint.
|
||||
For Azure, this should be the Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com/).
|
||||
api_key: Optional API key. For standard OpenAI, uses OPENAI_API_KEY environment variable if None.
|
||||
For Azure, uses AZURE_EMBEDDING_API_KEY environment variable if None.
|
||||
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
|
||||
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
|
||||
Do NOT manually pass this parameter when calling the function directly.
|
||||
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
|
||||
Manually passing a different value will trigger a warning and be ignored.
|
||||
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI/AsyncAzureOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
explicit parameters (api_key, base_url). Supports proxy configuration,
|
||||
custom headers, retry policies, etc.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
use_azure: Whether to use Azure OpenAI service instead of standard OpenAI.
|
||||
When True, creates an AsyncAzureOpenAI client. Default is False.
|
||||
azure_deployment: Azure OpenAI deployment name. Only used when use_azure=True.
|
||||
If not specified, falls back to AZURE_EMBEDDING_DEPLOYMENT environment variable.
|
||||
api_version: Azure OpenAI API version (e.g., "2024-02-15-preview"). Only used
|
||||
when use_azure=True. If not specified, falls back to AZURE_EMBEDDING_API_VERSION
|
||||
environment variable.
|
||||
|
||||
Returns:
|
||||
A numpy array of embeddings, one per input text.
|
||||
|
|
@ -658,9 +731,14 @@ async def openai_embed(
|
|||
RateLimitError: If the OpenAI API rate limit is exceeded.
|
||||
APITimeoutError: If the OpenAI API request times out.
|
||||
"""
|
||||
# Create the OpenAI client
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key, base_url=base_url, client_configs=client_configs
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
client_configs=client_configs,
|
||||
)
|
||||
|
||||
async with openai_async_client:
|
||||
|
|
@ -693,3 +771,169 @@ async def openai_embed(
|
|||
for dp in response.data
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# Azure OpenAI wrapper functions for backward compatibility
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
api_version: str | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""Azure OpenAI completion wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_complete_if_cache implementation with Azure-specific parameter handling.
|
||||
|
||||
All parameters from the underlying openai_complete_if_cache are exposed to ensure
|
||||
full feature parity and API consistency.
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
||||
base_url = (
|
||||
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
# Call the unified implementation with Azure-specific parameters
|
||||
return await openai_complete_if_cache(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
token_tracker=token_tracker,
|
||||
stream=stream,
|
||||
timeout=timeout,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=None,
|
||||
keyword_extraction=False,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
"""Azure OpenAI complete wrapper function.
|
||||
|
||||
Provides backward compatibility for azure_openai_complete calls.
|
||||
"""
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
result = await azure_openai_complete_if_cache(
|
||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
async def azure_openai_embed(
|
||||
texts: list[str],
|
||||
model: str | None = None,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Azure OpenAI embedding wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_embed implementation with Azure-specific parameter handling.
|
||||
|
||||
All parameters from the underlying openai_embed are exposed to ensure
|
||||
full feature parity and API consistency.
|
||||
|
||||
IMPORTANT - Decorator Usage:
|
||||
|
||||
1. This function is decorated with @wrap_embedding_func_with_attrs to provide
|
||||
the EmbeddingFunc interface for users who need to access embedding_dim
|
||||
and other attributes.
|
||||
|
||||
2. This function does NOT use @retry decorator to avoid double-wrapping,
|
||||
since the underlying openai_embed.func already has retry logic.
|
||||
|
||||
3. This function calls openai_embed.func (the unwrapped function) instead of
|
||||
openai_embed (the EmbeddingFunc instance) to avoid double decoration issues:
|
||||
|
||||
✅ Correct: await openai_embed.func(...) # Calls unwrapped function with retry
|
||||
❌ Wrong: await openai_embed(...) # Would cause double EmbeddingFunc wrapping
|
||||
|
||||
Double decoration causes:
|
||||
- Double injection of embedding_dim parameter
|
||||
- Incorrect parameter passing to the underlying implementation
|
||||
- Runtime errors due to parameter conflicts
|
||||
|
||||
The call chain with correct implementation:
|
||||
azure_openai_embed(texts)
|
||||
→ EmbeddingFunc.__call__(texts) # azure's decorator
|
||||
→ azure_openai_embed_impl(texts, embedding_dim=1536)
|
||||
→ openai_embed.func(texts, ...)
|
||||
→ @retry_wrapper(texts, ...) # openai's retry (only one layer)
|
||||
→ openai_embed_impl(texts, ...)
|
||||
→ actual embedding computation
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = (
|
||||
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||
or model
|
||||
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
)
|
||||
base_url = (
|
||||
base_url
|
||||
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
||||
or os.getenv("EMBEDDING_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key
|
||||
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
||||
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
)
|
||||
|
||||
# CRITICAL: Call openai_embed.func (unwrapped) to avoid double decoration
|
||||
# openai_embed is an EmbeddingFunc instance, .func accesses the underlying function
|
||||
return await openai_embed.func(
|
||||
texts=texts,
|
||||
model=model or deployment,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
token_tracker=token_tracker,
|
||||
client_configs=client_configs,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -1005,7 +1005,76 @@ def priority_limit_async_func_call(
|
|||
|
||||
|
||||
def wrap_embedding_func_with_attrs(**kwargs):
|
||||
"""Wrap a function with attributes"""
|
||||
"""Decorator to add embedding dimension and token limit attributes to embedding functions.
|
||||
|
||||
This decorator wraps an async embedding function and returns an EmbeddingFunc instance
|
||||
that automatically handles dimension parameter injection and attribute management.
|
||||
|
||||
WARNING: DO NOT apply this decorator to wrapper functions that call other
|
||||
decorated embedding functions. This will cause double decoration and parameter
|
||||
injection conflicts.
|
||||
|
||||
Correct usage patterns:
|
||||
|
||||
1. Direct implementation (decorated):
|
||||
```python
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
async def my_embed(texts, embedding_dim=None):
|
||||
# Direct implementation
|
||||
return embeddings
|
||||
```
|
||||
|
||||
2. Wrapper calling decorated function (DO NOT decorate wrapper):
|
||||
```python
|
||||
# my_embed is already decorated above
|
||||
|
||||
async def my_wrapper(texts, **kwargs): # ❌ DO NOT decorate this!
|
||||
# Must call .func to access unwrapped implementation
|
||||
return await my_embed.func(texts, **kwargs)
|
||||
```
|
||||
|
||||
3. Wrapper calling decorated function (properly decorated):
|
||||
```python
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
async def my_wrapper(texts, **kwargs): # ✅ Can decorate if calling .func
|
||||
# Calling .func avoids double decoration
|
||||
return await my_embed.func(texts, **kwargs)
|
||||
```
|
||||
|
||||
The decorated function becomes an EmbeddingFunc instance with:
|
||||
- embedding_dim: The embedding dimension
|
||||
- max_token_size: Maximum token limit (optional)
|
||||
- func: The original unwrapped function (access via .func)
|
||||
- __call__: Wrapper that injects embedding_dim parameter
|
||||
|
||||
Double decoration causes:
|
||||
- Double injection of embedding_dim parameter
|
||||
- Incorrect parameter passing to the underlying implementation
|
||||
- Runtime errors due to parameter conflicts
|
||||
|
||||
Args:
|
||||
embedding_dim: The dimension of embedding vectors
|
||||
max_token_size: Maximum number of tokens (optional)
|
||||
send_dimensions: Whether to inject embedding_dim as a keyword argument (optional)
|
||||
|
||||
Returns:
|
||||
A decorator that wraps the function as an EmbeddingFunc instance
|
||||
|
||||
Example of correct wrapper implementation:
|
||||
```python
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@retry(...)
|
||||
async def openai_embed(texts, ...):
|
||||
# Base implementation
|
||||
pass
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536) # Note: No @retry here!
|
||||
async def azure_openai_embed(texts, ...):
|
||||
# CRITICAL: Call .func to access unwrapped function
|
||||
return await openai_embed.func(texts, ...) # ✅ Correct
|
||||
# return await openai_embed(texts, ...) # ❌ Wrong - double decoration!
|
||||
```
|
||||
"""
|
||||
|
||||
def final_decro(func) -> EmbeddingFunc:
|
||||
new_func = EmbeddingFunc(**kwargs, func=func)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue